【題目】已知,拋物線a<0)與x軸交于A(3,0)、B兩點,與y軸交于點C,拋物線的對稱軸是直線x=1,D為拋物線的頂點,點EyC點的上方,且CE=

(1)求拋物線的解析式及頂點D的坐標;

(2)求證:直線DEACD外接圓的切線;

(3)在直線AC上方的拋物線上找一點P,使,求點P的坐標;

(4)在坐標軸上找一點M,使以點BC、M為頂點的三角形與ACD相似,直接寫出點M的坐標.

【答案】1,頂點D1,4);(2)證明見解析;(3P,)或();(4)(00)或(9,0)或(0,﹣).

【解析】

試題(1)由對稱軸求出B的坐標,由待定系數(shù)法求出拋物線解析式,即可得出頂點D的坐標;

(2)由勾股定理和勾股定理的逆定理證出ACD為直角三角形,ACD=90°.得出ADACD外接圓的直徑,再證明AED為直角三角形,ADE=90°.得出ADDE,即可得出結論;

(3)求出直線AC的解析式,再求出線段AD的中點N的坐標,過點NNPAC,交拋物線于點P,求出直線NP的解析式,與拋物線聯(lián)立,即可得出答案;

(4)由相似三角形的性質和直角三角形的性質即可得出答案.

試題解析:(1)∵拋物線的對稱軸是直線x=1,點A(3,0),∴根據(jù)拋物線的對稱性知點B的坐標為(﹣1,0),OA=3,將A(3,0),B(﹣1,0)代入拋物線解析式中得:,解得:,∴拋物線解析式為;當x=1時,y=4,∴頂點D(1,4).

(2)當=0時,C的坐標為(0,3),∴AC= =,CD==,AD= =,∴AC2+CD2=AD2,∴△ACD為直角三角形,ACD=90°,∴ADACD外接圓的直徑,E C點的上方,且CE=,∴E(0,),∴AE= =,DE= =,∴DE2+AD2=AE2,∴△AED為直角三角形,ADE=90°,∴ADDE,又ADACD外接圓的直徑,DEACD外接圓的切線;

(3)設直線AC的解析式為y=kx+b,根據(jù)題意得:,解得:,∴直線AC的解析式為y=﹣x+3,∵A(3,0),D(1,4),∴線段AD的中點N的坐標為(2,2),過點NNPAC,交拋物線于點P,設直線NP的解析式為y=﹣x+c,則﹣2+c=2,解得:c=4,∴直線NP的解析式為y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3聯(lián)立得:﹣x2+2x+3=﹣x+4,解得:x=x=,∴y=,或y=,∴P,)或(,);

(4)分三種情況:M恰好為原點,滿足CMB∽△ACDM(0,0);

Mx軸正半軸上,MCB∽△ACD,此時M(9,0);

My軸負半軸上,CBM∽△ACD,此時M(0,﹣);

綜上所述,點M的坐標為(0,0)或(9,0)或(0,﹣).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,是邊上任意一點(與點不重合),以為一直角邊在的外部作,,連接,

1)在圖中,若,,現(xiàn)將圖中的繞著點順時針旋轉銳角,得到圖,那么線段,之間有怎樣的關系,寫出結論,并說明理由;

2)在圖中,若,,,現(xiàn)將圖中的繞著點順時針旋轉銳角,得到圖,連接、

①求證:

②計算:的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+mx+nx軸于點A﹣2,0)和點B,交y軸于點C0,2).

1)求拋物線的函數(shù)表達式;

2)若點M在拋物線上,且SAOM=2SBOC,求點M的坐標;

3)如圖2,設點N是線段AC上的一動點,作DNx軸,交拋物線于點D,求線段DN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B在雙曲線x0)上,連接OAAB,以OA、AB為邊作OABC.若點C恰落在雙曲線x0)上,此時OABC的面積為(  ).

A.B.C.D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線a<0)與x軸交于A(3,0)、B兩點,與y軸交于點C,拋物線的對稱軸是直線x=1,D為拋物線的頂點,點EyC點的上方,且CE=

(1)求拋物線的解析式及頂點D的坐標;

(2)求證:直線DEACD外接圓的切線;

(3)在直線AC上方的拋物線上找一點P,使,求點P的坐標;

(4)在坐標軸上找一點M,使以點B、C、M為頂點的三角形與ACD相似,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC6,EF分別是AB,AC的中點,動點P在射線EF上,BPCE于點D,∠CBP的平分線交CE于點Q,當CQCE時,EP+BP的值為( 。

A.6B.9C.12D.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)yax+b的圖象與反比例函數(shù)yk為常數(shù),k≠0)的圖象交于二、四象限內的A、B兩點,與y軸交于C點.點A的坐標為(m,3),點B與點A關于yx成軸對稱,tanAOC

1)求k的值;

2)直接寫出點B的坐標,并求直線AB的解析式;

3Py軸上一點,且SPBC2SAOB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車銷售商推出分期付款購車促銷活動,交首付款后,余額要在30個月內結清,不計算利息,王先生在活動期間購買了價格為12萬元的汽車,交了首付款后平均每月付款萬元,個月結清.的函數(shù)關系如圖所示,根據(jù)圖像回答下列問題:

1)確定的函數(shù)解析式,并求出首付款的數(shù)目;

2)王先生若用20個月結清,平均每月應付多少萬元?

3)如果打算每月付款不超過4000元,王先生至少要幾個月才能結清余額?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ADBC內接于⊙OAD平分∠EDC,AEBC交直線BDE

1)求證:AE是⊙O的切線;

2)若CD為直徑,tanADE=2,求sinBDC的值.

查看答案和解析>>

同步練習冊答案