【題目】在學(xué)習(xí)了軸對(duì)稱知識(shí)之后,數(shù)學(xué)興趣小組的同學(xué)們對(duì)課本習(xí)題進(jìn)行了深入研究,請(qǐng)你跟隨興趣小組的同學(xué),一起完成下列問題.
(1)(課本習(xí)題)如圖①,△ABC是等邊三角形,BD是中線,延長(zhǎng)BC至E,使CE=CD. 求證:DB=DE
(2)(嘗試變式)如圖②,△ABC是等邊三角形,D是AC邊上任意一點(diǎn),延長(zhǎng)BC至E,使CE=AD.
求證:DB=DE.
(3)(拓展延伸)如圖③,△ABC是等邊三角形,D是AC延長(zhǎng)線上任意一點(diǎn),延長(zhǎng)BC至E,使CE=AD請(qǐng)問DB與DE是否相等? 并證明你的結(jié)論.
【答案】(1)見詳解;(2)見詳解;(3)DB=DE成立,證明見詳解
【解析】
(1)由等邊三角形的性質(zhì),得到∠CBD=30°,∠ACB=60°,由CD=CE,則∠E=∠CDE=30°,得到∠E=∠CBD=30°,即可得到DB=DE;
(2)過點(diǎn)D作DG∥AB,交BC于點(diǎn)G,證明△BDC≌△EDG,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
(3)過點(diǎn)D作DF∥AB交BE于F,由“SAS”可證△BCD≌△EFD,可得DB=DE.
證明:(1)∵△ABC是等邊三角形
∴∠ABC=∠BCA=60°,
∵點(diǎn)D為線段AC的中點(diǎn),
∴BD平分∠ABC,AD=CD,
∴∠CBD=30°,
∵CD=CE,
∴∠CDE=∠CED,
又∵∠CDE+∠CED=∠BCD,
∴2∠CED=60°,
∴∠CED=30°=∠CBD,
∴DB=DE;
(2)過點(diǎn)D作DG∥AB,交BC于點(diǎn)G,如圖,
∴∠DGC=∠ABC=60°,又∠DCG=60°,
∴△DGC為等邊三角形,
∴DG=GC=CD,
∴BC-GC=AC-CD,即AD=BG,
∵AD=CE,
∴BG=CE,
∴BC=GE,
在△BDC和△EDG中,
,
∴△BDC≌△EDG(SAS)
∴BD=DE;
(3)DB=DE成立,
理由如下:過點(diǎn)D作DF∥AB交BE于F,
∴∠CDF=∠A,∠CFD=∠ABC,
∵△ABC是等邊三角形
∴∠ABC=∠BCA=∠A=60°,BC=AC=AB,
∴∠CDF=∠CFD=60°=∠ACB=∠DCF,
∴△CDF為等邊三角形
∴CD=DF=CF,
又AD=CE,
∴AD-CD=CE-CF,
∴BC=AC=EF,
∵∠BCD=∠CFD+∠CDF=120°,
∠DFE=∠FCD+∠FDC=120°,
∴∠BCD=∠DFE,且BC=EF,CD=DF,
∴△BCD≌△EFD(SAS)
∴DB=DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小紅和小明在操場(chǎng)做游戲,他們先在地上畫了半徑分別2m和3m的同心圓(如圖),蒙上眼在一定距離外向圈內(nèi)擲小石子,擲中陰影小紅勝,否則小明勝,未擲入圈內(nèi)不算,你來(lái)當(dāng)裁判.
(1)你認(rèn)為游戲公平嗎?為什么?
(2)游戲結(jié)束,小明邊走邊想,“反過來(lái),能否用頻率估計(jì)概率的方法,來(lái)估算某一不規(guī)則圖形的面積呢”.請(qǐng)你設(shè)計(jì)方案,解決這一問題.(要求補(bǔ)充完整圖形,說(shuō)明設(shè)計(jì)步驟、原理,寫出估算公式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為4cm的正方形對(duì)角線的交點(diǎn),是的中點(diǎn),動(dòng)點(diǎn)由點(diǎn)開始沿折線方向勻速運(yùn)動(dòng),到點(diǎn)時(shí)停止運(yùn)動(dòng),速度為.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為,點(diǎn)的運(yùn)動(dòng)路徑與、所圍成的圖形面積為,則描述面積與時(shí)間的關(guān)系的圖象是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn),且OP=3.若點(diǎn)M、N分別是射線OA、OB上異于點(diǎn)O的動(dòng)點(diǎn),則△PMN周長(zhǎng)的最小值是( )
A.12B.9C.6D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AC于點(diǎn)D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)如圖2,若線段AB、DE的延長(zhǎng)線交于點(diǎn)F,∠C=75°,CD=,求⊙O的半徑和BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于、兩點(diǎn).
(1)求出兩函數(shù)解析式;
(2)根據(jù)圖像回答:當(dāng)為何值時(shí),一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值?
(3)連接、,試求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地為了解青少年實(shí)力情況,現(xiàn)隨機(jī)抽查了若干名初中學(xué)生進(jìn)行視力情況統(tǒng)計(jì),分為視力正常、輕度近視、重度近視三種情況,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求這次被抽查的學(xué)生一共有多少人?
(2)求被抽查的學(xué)生中輕度近視的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若某地有萬(wàn)名初中生,請(qǐng)估計(jì)視力不正常(包括輕度近視、重度近視)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽(yáng)的余輝下落在一個(gè)斜坡上的點(diǎn)D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測(cè)量旗桿的高度,在旗桿的底部A處測(cè)得點(diǎn)D的仰角為15°,AC=10米,又測(cè)得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(≈1.7,結(jié)果精確到個(gè)位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海中有一個(gè)小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點(diǎn)A測(cè)得小島P在北偏東60°方向上,航行12海里到達(dá)B點(diǎn),這時(shí)測(cè)得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險(xiǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com