【題目】學生參加植樹造林,甲班每天比乙班多植5棵樹,甲班植80棵樹與乙班植70棵樹所用的天數(shù)相等,求甲、乙兩班每天各植樹多少棵。下面列式錯誤的是

A.設甲班每天植樹x棵,則B.設乙班每天植樹x棵,則

C.設甲班在x天植樹80棵,則D.設乙班在x天植樹70棵,則

【答案】D

【解析】

分別設甲班每天植樹x棵、乙班每天植樹x棵、甲班在x天植樹80棵、乙班在x天植樹70棵,根據(jù)甲班植80棵樹與乙班植70棵樹所用的天數(shù)相等以及甲班每天比乙班多植5棵樹,列出方程即可判斷,

設甲班每天植樹x棵,根據(jù)甲班植80棵樹與乙班植70棵樹所用的天數(shù)相等,可得方程:,故A正確;

設乙班每天植樹x棵,根據(jù)甲班植80棵樹與乙班植70棵樹所用的天數(shù)相等,可得方程:,故B正確;

設甲班在x天植樹80棵,根據(jù)甲班每天比乙班多植5棵樹,可得方程:,故C正確;

設乙班在x天植樹70棵,根據(jù)甲班每天比乙班多植5棵樹,可得方程:,故D錯誤,

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖17Z11,小紅同學要測量AC兩地的距離A,C之間有一水池,不能直接測量于是她在AC同一水平面上選取了一點B,B可直接到達A,C兩地她測量得到AB80,BC20ABC120°.請你幫助小紅同學求出A,C兩地之間的距離(結(jié)果精確到1參考數(shù)據(jù): ≈4.6)

17Z11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點FAC的延長線上,且∠CBF=CAB.

(1)求證:直線BF是⊙O的切線;

(2)若AB=5,sinCBF=,BCBF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示的數(shù)a、點B表示數(shù)b,a、b滿足|a40|+b+820.點O是數(shù)軸原點.

1)點A表示的數(shù)為 ,點B表示的數(shù)為 ,線段AB的長為

2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC2BC,則點C在數(shù)軸上表示的數(shù)為

3)現(xiàn)有動點PQ都從B點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當點P移動到O點時,點Q才從B點出發(fā),并以每秒3個單位長度的速度向右移動,且當點P到達A點時,點Q就停止移動,設點P移動的時間為t秒,問:當t為多少時,PQ兩點相距4個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1

1)如果點A、D表示的數(shù)互為相反數(shù),那么點B表示的數(shù)是多少?

2)當點B為原點時,若存在一點MA點的距離是點MD點的距離的2倍,則點M所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校開展書香校園,誦讀經(jīng)典活動,隨機抽查了部分學生,對他們每天的課外閱讀時長進行統(tǒng)計,并將結(jié)果分為四類:設每天閱讀時長為t分鐘,當0t≤20時記為A類,當20t≤40時記為B類,當40t≤60時記為C類,當t60時記為D類,收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:

1)這次共抽取了 名學生進行調(diào)查統(tǒng)計,扇形統(tǒng)計圖中的D類所對應的扇形圓心角為 °

2)將條形統(tǒng)計圖補充完整;

3)若該校共有2000名學生,請估計該校每天閱讀時長超過40分鐘的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD和等腰直角三角形AEFAE=AFAEAD),連接DEBF,PDE的中點,連接AP。將AEF繞點A逆時針旋轉(zhuǎn)。

1)如圖①,當AEF的頂點E、F恰好分別落在邊ABAD時,則線段AP與線段BF的位置關(guān)系為 ,數(shù)量關(guān)系為

2)當AEF繞點A逆時針旋轉(zhuǎn)到如圖②所示位置時,證明:第(1)問中的結(jié)論仍然成立。

3)若AB=3,AE=1,則線段AP的取值范圍為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,對角線 AC、BD交于點 M,點E在邊BC上,且∠DAE=DCB,聯(lián)結(jié)AE,AEBD交于點F.

(1)求證:

(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OB為∠AOC內(nèi)一條射線,∠AOB的余角是它自身的兩倍.

1)求∠AOB的度數(shù);

2)射線OEOA開始,在∠AOB內(nèi)以1°/s的速度繞著O點逆時針方向旋轉(zhuǎn),轉(zhuǎn)到OB停止,同時射線OF在∠BOC內(nèi)從OB開始以3°/s的速度繞O點逆時針方向旋轉(zhuǎn)轉(zhuǎn)到OC停止,設運動時間為t秒.

①若OE,OF運動的任一時刻,均有∠COF3BOE,求∠AOC的度數(shù);

OP為∠AOC內(nèi)任一射線,在①的條件下,當t10時,以OP為邊所有角的度數(shù)和的最小值為   

查看答案和解析>>

同步練習冊答案