【題目】某物流公司的快遞車和貨車同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達(dá)乙地后卸完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時(shí),兩車之間的距離y(千米)與貨車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個(gè)結(jié)論:

①快遞車從甲地到乙地的速度為100千米/時(shí);②甲、乙兩地之間的距離為120千米;③圖中點(diǎn)B的坐標(biāo)為(75);④快遞車從乙地返回時(shí)的速度為90千米/時(shí).以上4個(gè)結(jié)論中正確的是( )

A. ①③④ B. ①②④ C. ②③④ D. ①②③④

【答案】A

【解析】

要解答本題需要熟悉一次函數(shù)的圖象特征,再根據(jù)一次函數(shù)的性質(zhì)和圖象結(jié)合實(shí)際問題對每一項(xiàng)進(jìn)行分析即可得出答案.

設(shè)快遞車從甲地到乙地的速度為x千米/時(shí),由圖像可得

3(x60)=120,

x=100.

正確;

因?yàn)?20千米是快遞車到達(dá)乙地后兩車之間的距離,不是甲、乙兩地之間的距離,

錯誤;

因?yàn)榭爝f車到達(dá)乙地后缷完物品再另裝貨物共用45分鐘,

所以圖中點(diǎn)B的橫坐標(biāo)為3+=3,

縱坐標(biāo)為12060×=75,

正確;

設(shè)快遞車從乙地返回時(shí)的速度為y千米/時(shí),則返回時(shí)與貨車共同行駛的時(shí)間為(43)小時(shí)此時(shí)兩車還相距75千米,由題意,得

(y+60)( 43)=75,

y=90,

正確。

其中正確的是:①③④

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.

收集數(shù)據(jù) 

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:

甲 78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙 93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù) 

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70-79分為生產(chǎn)技能良好,60-69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù) 

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

部門

平均數(shù)

中位數(shù)

眾數(shù)

78.3

77.5

75

78

80.5

81

得出結(jié)論:

a.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為________;

b.可以推斷出________部門員工的生產(chǎn)技能水平較高,理由為________.(至少從兩個(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長相等的兩個(gè)正方形ABCDOEFG,若將正方形OEFG繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)150°,兩個(gè)正方形的重疊部分四邊形OMCN的面積( )

A. 不變 B. 先增大再減小 C. 先減小再增大 D. 不斷增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖矩形ABCD中,AD=1,CD= ,連接AC,將線段AC、AB分別繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AE、AF,線段AE與弧BF交于點(diǎn)G,連接CG,則圖中陰影部分面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ ABC 和△ADE都是等邊三角形,點(diǎn) B ED 的延長線上.

1)求證:△ABD≌△ACE

2)求證:AECE=BE

3)求∠BEC 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAE +AED=180°,∠1=2,那么∠M=N.下面是推理過程,請你完成.

解:∵∠BAE+AED=180°(已知)

ABDE______.

∴∠BAE=AEF______.

又∵∠1=2(已知)

BAE1=AEF_____(等式性質(zhì)),即 MAE = NEA .

___________________.

∴∠M=N(兩直線平行,內(nèi)錯角相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,有一塊直角三角板XYZ放置在ABC上,恰好三角板XYZ的兩條直角邊XY、XZ分別經(jīng)過點(diǎn)B、C直角頂點(diǎn)XABC內(nèi)部,若∠A=30,則∠ABC+ACB=_____,∠XBC+XCB=________

2)如圖2,改變直角三角板XYZ的位置,使三角板XYZ的兩條直角邊XYXZ仍然分別經(jīng)過點(diǎn)B、C,直角頂點(diǎn)X還在ABC內(nèi)部,那么∠ABX+ACX的大小是否變化?若變化,請舉例說明;若不變化,請求出∠ABX+ACX的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一根長為5米的竹竿AB斜立于墻MN的右側(cè),底端B與墻角N 的距離為3米,當(dāng)竹竿頂端A下滑x米時(shí),底端B便隨著向右滑行y米,反映y與x變化關(guān)系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,A=36°,稱滿足此條件的三角形為黃金等腰三角形.請完成以下操作:(畫圖不要求使用圓規(guī),以下問題所指的等腰三角形個(gè)數(shù)均不包括ABC

1)在圖1中畫1條線段,使圖中有2個(gè)等腰三角形,并直接寫出這2個(gè)等腰三角形的頂角度數(shù)分別是      度和      度;

2)在圖2中畫2條線段,使圖中有4個(gè)等腰三角形;

3)繼續(xù)按以上操作發(fā)現(xiàn):在ABC中畫n條線段,則圖中有      個(gè)等腰三角形,其中有      個(gè)黃金等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案