【題目】“食品安全”受到全社會的廣泛關注,育才中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調查的學生共有________人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_________

2)請補全條形統(tǒng)計圖;

3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為,現(xiàn)從中隨機抽取人參加食品安全知識競賽,則恰好抽到個男生和個女生的概率________.

【答案】16090;(2)圖見詳解;(3

【解析】

(1)根據(jù)了解很少的人數(shù)和所占的百分比求出抽查的總人數(shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);
(2)用調查的總人數(shù)減去“基本了解”“了解很少”和“不了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;
(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.

解:(1)接受問卷調查的學生共有30÷50%=60(),
扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為360°×=90°,
故答案為:6090
(2)了解的人數(shù)有:60153010=5(60153010=5()),補圖如下:

(3)畫樹狀圖得:

∵共有20種等可能的結果,恰好抽到1個男生和1個女生的有12種情況,
∴恰好抽到1個男生和1個女生的概率為=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,(k+12k2+2k+1,變形得:(k+12k22k+1,對上面的等式,依次令k1,2,3,得:

1個等式:22122×1+1

2個等式:32222×2+1

3個等式:42322×3+1

1)按規(guī)律,寫出第n個等式(用含n的等式表示):第n個等式   

2)記S11+2+3+…+n,將這n個等式兩邊分別相加,你能求出S1的公式嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點四邊形 (頂點是網(wǎng)格線的交點).

1)請畫出四邊形關于直線對稱的四邊形(點的對應點分別為點);

2)若以點為位似中心,將四邊形放大到原來的2倍,請在該網(wǎng)格中畫出放大后的四邊形(點的對應點分別為點);

3)填空:__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與軸交于點,二次函數(shù)的圖象經(jīng)過兩點,且與軸的負半軸交于點,動點在直線下方的二次函數(shù)圖象上.

1)求二次函數(shù)的表達式;

2)如圖1,連接,,設的面積為,求的最大值;

3)如圖2,過點于點,是否存在點,使得中的某個角恰好等于2倍?若存在,直接寫出點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,的弦,是弧的中點,弦于點,交于點,過點的切線,交延長線于點,連接

1)求證:

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸交于A、B兩點,點P在函數(shù)的圖象上,若PAB為直角三角形,則滿足條件的點P的個數(shù)為( ).

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,反比例函數(shù))的圖像與矩形兩邊ABBC分別交于點D、點E,且.

1)求點D的坐標和的值;

2)求證:

3)若點是線段上的一個動點,是否存在點,使?若存在,求出此時點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市組織全民健身活動,有100名男選手參加由跑、跳、投等10個田徑項目組成的十項全能比賽,其中25名選手的一百米跑成績排名,跳遠成績排名與10項總成績排名情況如圖所示.

甲、乙、丙表示三名男選手,下面有3個推斷:①甲的一百米跑成績排名比10項總成績排名靠前;②乙的一百米跑成績排名比10項總成績排名靠后;③丙的一百米跑成績排名可能比跳遠成績排名靠前.其中合理的是(

A. B. C. ①②D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點是劣弧上一點,,且平分,交于點

1)求證:的切線;

2)若,求的長;

3)延長,交于點,若,求的半徑.

查看答案和解析>>

同步練習冊答案