【題目】已知點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點O在BC上,求證:AB=AC.

(2)如圖2,若點O在△ABC內(nèi)部,求證:AB=AC.

(3)猜想,若點O在△ABC的外部,AB=AC成立嗎?請說明理由.

【答案】(1)證明見解析(2)證明見解析(3)不一定成立

【解析】

(1)首先過點OODABD,作OEACE,易證得RtBODRtCOE,即可得∠B=C,根據(jù)等角對等邊的性質(zhì),即可證得AB=AC;

(2)首先過點OODABD,作OEACE,易證得RtBODRtCOE,然后又由OB=OC,根據(jù)等邊對等角的性質(zhì),易證得∠ABC=ACB,根據(jù)等角對等邊的性質(zhì),AB=AC;

(3)首先過點OODABD,作OEAC的延長線于點E,易證得RtBODRtCOE,然后又由OB=OC,根據(jù)等邊對等角的性質(zhì),易證得∠ABC=ACB,根據(jù)等角對等邊的性質(zhì),AB=AC.

詳證明:(1)過點OODABD,作OEACE,

OD=OE,ODB=OEC=90°,

RtBODRtCOE中,

,

RtBODRtCOE(HL),

∴∠B=C,

AB=AC;

(2)過點OODABD,OEACE,

OD=OE,ODB=OEC=90°,

RtBODRtCOE中,

,

RtBODRtCOE(HL),

∴∠DBO=ECO,

OB=OC,

∴∠OBC=OCB,

∴∠ABC=ACB,

AB=AC;

(3)不一定成立.

證明:如圖3,過點OODABD,作OEAC的延長線于點E,

OD=OE,ODB=OEC=90°,

RtBODRtCOE中,

,

RtBODRtCOE(HL),

∴∠DBO=ECO,

OB=OC,

∴∠OBC=OCB,

∴∠DBC=ECB,

∴∠ABC=ACB,

AB=AC.

如圖4,可知AB≠AC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為2,點E、F、G、H分別在AD、AB、BC、CD上的點,且AE=BF=CG=DH,分別將△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四邊形MNKP,設(shè)AE=x,S四邊形MNKP=y,則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生體能情況,規(guī)定參加測試的每名學(xué)生從“立定跳遠(yuǎn)”,“耐久跑”,“擲實心球”,“引體向上”四個項目中隨機抽取兩項作為測試項目.
(1)小明同學(xué)恰好抽到“立定跳遠(yuǎn)”,“耐久跑”兩項的概率是;
(2)據(jù)統(tǒng)計,初三(3)班共12名男生參加了“立定跳遠(yuǎn)”的測試,他們的分?jǐn)?shù)如下:95、100、90、82、90、65、89、74、75、93、92、85.
①這組數(shù)據(jù)的眾數(shù)是 , 中位數(shù)是;
②若將不低于90分的成績評為優(yōu)秀,請你估計初三年級參加“立定跳遠(yuǎn)”的400名男生中成績?yōu)閮?yōu)秀的學(xué)生約為多少人 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在方格紙中如何通過平移或旋轉(zhuǎn)這兩種變換,由圖形A得到圖形B,再由圖形B得到圖形C(對于平移變換要求回答出平移的方向和平移的距離;對于旋轉(zhuǎn)變換要求回答出旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和旋轉(zhuǎn)角度);

(2)如圖1,如果點P,P3的坐標(biāo)分別為(0,0),(2,1),寫出點P2的坐標(biāo);

(3)2是某設(shè)計師設(shè)計圖案的一部分,請你運用旋轉(zhuǎn)變換的方法,在方格紙中將圖形繞點O順時針依次旋轉(zhuǎn)90°,180°,270°,依次畫出旋轉(zhuǎn)后所得到的圖形,你會得到一個美麗的圖案,但涂陰影時不要涂錯了位置,否則不會出現(xiàn)理想的效果,你來試一試吧!(注:方格紙中的小正方形的邊長為1個單位長度)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC中,∠C=90°,AC=BC,直線m經(jīng)過點C,分別過點A,B作直線m的垂線,垂足分別為點E,F(xiàn),若AE=3,AC=5,則線段EF的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MNAC于點D,交AB于點E

1)求證:△ABD是等腰三角形;

2)若∠A=40°,求∠DBC的度數(shù);

3)若AE=6,△CBD的周長為20,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上兩點間的距離等于這兩點所對應(yīng)的數(shù)的差的絕對值.例:如圖所示,點AB在數(shù)軸上分別對應(yīng)的數(shù)為a、b,則A、B兩點間的距離表示為|AB|=|ab|

根據(jù)以上知識解題:

1)若數(shù)軸上兩點AB表示的數(shù)為x、﹣1

A、B之間的距離可用含x的式子表示為  ;

若該兩點之間的距離為2,那么x值為  

2|x+1|+|x﹣2|的最小值為  ,此時x的取值是  ;

3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|=15,求x﹣2y的最大值 和最小值  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是a,另一組數(shù)據(jù),,,,的平均數(shù)是(

A. a B. 2a C. 2a+5 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線交于點O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).

A. OA=OC,OB=OD B. BAD=BCD,ABCD

C. ADBC,AD=BC D. AB=CD,AO=CO

查看答案和解析>>

同步練習(xí)冊答案