在平面直角坐標(biāo)系中,已知拋物線(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(4,3),直角頂點B在第四象限.

(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達(dá)式;

(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.

(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當(dāng)以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標(biāo);

(ii)取BC的中點N,連接NP,BQ.試探究是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

 

【答案】

解:(1)由題意,得點B的坐標(biāo)為(4,﹣1).

∵拋物線過A(0,﹣1),B(4,﹣1)兩點,

,解得。

∴拋物線的函數(shù)表達(dá)式為:。

(2)(i)∵A(0,﹣1),C(4,3),∴直線AC的解析式為:y=x﹣1。

設(shè)平移前拋物線的頂點為P0,則由(1)可得P0的坐標(biāo)為(2,1),且P0在直線AC上。

∵點P在直線AC上滑動,∴可設(shè)P的坐標(biāo)為(m,m﹣1)。

則平移后拋物線的函數(shù)表達(dá)式為:。

解方程組:,解得,。

∴P(m,m﹣1),Q(m﹣2,m﹣3)。

過點P作PE∥x軸,過點Q作QE∥y軸,則

PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,

∴PQ==AP0。

若△MPQ為等腰直角三角形,則可分為以下兩種情況:

①當(dāng)PQ為直角邊時:點M到PQ的距離為(即為PQ的長),

由A(0,﹣1),B(4,﹣1),P0(2,1)可知,

△ABP0為等腰直角三角形,且BP0⊥AC,BP0=。

如答圖1,過點B作直線l1∥AC,交拋物線于點M,則M為符合條件的點。

∴可設(shè)直線l1的解析式為:y=x+b1

∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5。∴直線l1的解析式為:y=x﹣5。

解方程組,得:,

∴M1(4,﹣1),M2(﹣2,﹣7)。

②當(dāng)PQ為斜邊時:MP=MQ=2,可求得點M到PQ的距離為

如答圖1,取AB的中點F,則點F的坐標(biāo)為(2,﹣1)。

由A(0,﹣1),F(xiàn)(2,﹣1),P0(2,1)可知:

△AFP0為等腰直角三角形,且點F到直線AC的距離為。

過點F作直線l2∥AC,交拋物線于點M,則M為符合條件的點。

∴可設(shè)直線l2的解析式為:y=x+b2

∵F(2,﹣1),∴﹣1=2+b2,解得b1=﹣3。∴直線l2的解析式為:y=x﹣3。

解方程組,得:,。

∴M3),M4)。

綜上所述,所有符合條件的點M的坐標(biāo)為:

M1(4,﹣1),M2(﹣2,﹣7),M3,),M4,)。

(ii)存在最大值。理由如下:

由(i)知PQ=為定值,則當(dāng)NP+BQ取最小值時,有最大值。

如答圖2,取點B關(guān)于AC的對稱點B′,易得點B′的坐標(biāo)為(0,3),BQ=B′Q。

連接QF,F(xiàn)N,QB′,易得FN∥PQ,且FN=PQ,

∴四邊形PQFN為平行四邊形。

∴NP=FQ。

∴NP+BQ=FQ+B′P≥FB′。

∴當(dāng)B′、Q、F三點共線時,NP+BQ最小,最小值為。

的最大值為。

【解析】(1)先求出點B的坐標(biāo),然后利用待定系數(shù)法求出拋物線的函數(shù)表達(dá)式。

(2)(i)首先求出直線AC的解析式和線段PQ的長度,作為后續(xù)計算的基礎(chǔ)。

若△MPQ為等腰直角三角形,則可分為以下兩種情況:

①當(dāng)PQ為直角邊時:點M到PQ的距離為.此時,將直線AC向右平移4個單位后所得直線(y=x﹣5)與拋物線的交點,即為所求之M點。

②當(dāng)PQ為斜邊時:點M到PQ的距離為.此時,將直線AC向右平移2個單位后所得直線(y=x﹣3)與拋物線的交點,即為所求之M點.

(ii)由(i)可知,PQ=為定值,因此當(dāng)NP+BQ取最小值時,有最大值。如答圖2所示,作點B關(guān)于直線AC的對稱點B′,由解析可知,當(dāng)B′、Q、F(AB中點)三點共線時,NP+BQ最小,最小值為線段B′F的長度。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案