(2011•盤錦)如圖,風車的支桿OE垂直于桌面,風車中心O到桌面的距離OE為25cm,小小風車在風吹動下繞著中心O不停地轉(zhuǎn)動,轉(zhuǎn)動過程中,葉片端點A、B、C、D在同一圓O上,已知⊙O的半徑為10cm.
(1)風車在轉(zhuǎn)動過程中,當∠AOE=45°時,求點A到桌面的距離(結果保留根號).
(2)在風車轉(zhuǎn)動一周的過程中,求點A相對于桌面的高度不超過20cm所經(jīng)過的路徑長(結果保留π).
分析:(1)作A1F⊥MN于點F,A1G⊥OE于點G,在Rt△A1OG中,利用三角函數(shù)可求得OG,從而得出點A到桌面的距離A1F;
(2)作A2H⊥MN于H,則A2H=20.作A2D⊥OE于點D,則DE=A2H.在Rt△A2OD中,由特殊角的三角函數(shù)得∠A2OD=60°,由圓的軸對稱性可知,∠A3OA2=2∠A2OD=120°.從而得出點A所經(jīng)過的路徑長.
解答:解:(1)如圖(1),點A運動到點A1的位置時∠AOE=45°.
作A1F⊥MN于點F,A1G⊥OE于點G,
∴A1F=GE.(1分)
在Rt△A1OG中,
∵∠A1OG=45°,OA1=10,
∴OG=OA1•cos45°=10×
2
2
=5
2
.(2分)
∵OE=25,
∴GE=OE-OG=25-5
2

∴A1F=GE=25-5
2
.(3分)
答:點A到桌面的距離是(25-5
2
)厘米.(4分)

(2)如圖(2),點A在旋轉(zhuǎn)過程中運動到點A2、A3的位置時,點A到桌面的距離等于20厘米.
作A2H⊥MN于H,則A2H=20.作A2D⊥OE于點D,
∴DE=A2H.(5分)
∵OE=25,
∴OD=OE-DE=25-20=5.
在Rt△A2OD中,
∵OA2=10,
∴cos∠A2OD=
OD
OA2
=
5
10
=
1
2

∴∠A2OD=60°.(7分)
由圓的軸對稱性可知,∠A3OA2=2∠A2OD=120°.
∴點A所經(jīng)過的路徑長為
120π×10
180
=
20π
3
.(9分)
答:點A所經(jīng)過的路徑長為
20π
3
厘米.(10分)
點評:本題考查了弧長的計算、勾股定理、特殊角的三角函數(shù)值以及銳角三角函數(shù)的定義,綜合性較強難度偏大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•盤錦)如圖,在一個矩形空地ABCD上修建一個矩形花壇AMPQ,要求點M在AB上,點Q在AD上,點P在對角線BD上.若AB=6m,AD=4m,設AM的長為xm,矩形AMPQ的面積為S平方米.
(1)求S與x的函數(shù)關系式;
(2)當x為何值時,S有最大值?請求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•盤錦)如圖,已知⊙O的半徑為4,點D是直徑AB延長線上一點,DC切⊙O于點C,連接AC,若∠CAB=30°,則BD的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•盤錦)如圖,矩形紙片ABCD,AD=2AB=4,將紙片折疊,使點C落在AD上的點E處,折痕為BF,則DE=
4-2
3
4-2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•盤錦)如圖,在正方形ABCD中,點E、F分別為AD、AB的中點,連接DF、CE,DF與CE交于點H,則下列結論:①DF⊥CE;②DF=CE;③
DE
CE
=
HD
CD
;④
DE
DC
=
HD
HE
.其中正確結論的序號有
①②③
①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•盤錦)如圖,直線y=
m3
x+m(m≠0)交x軸負半軸于點A、交y軸正半軸于點B且AB=5,過點A作直線AC⊥AB交y軸于點C.點E從坐標原點O出發(fā),以0.8個單位/秒的速度沿y軸向上運動;與此同時直線l從與直線AC重合的位置出發(fā),以1個單位/秒的速度沿射線AB方向平行移動.直線l在平移過程中交射線AB于點F、交y軸于點G.設點E離開坐標原點O的時間為t(t≥0)s.
(1)求直線AC的解析式;
(2)直線l在平移過程中,請直接寫出△BOF為等腰三角形時點F的坐標;
(3)直線l在平移過程中,設點E到直線l的距離為d,求d與t的函數(shù)關系.

查看答案和解析>>

同步練習冊答案