【題目】用“定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定ab=ab2+2ab+a.

如:13=1×32+2×1×3+1=16.

(1)求(﹣2)3的值;

(2)若(3(﹣)=8,求a的值;

(3)若2x=m,(x)3=n(其中x為有理數(shù)),試比較m,n的大。

【答案】(1)﹣32;(2)a=3;(3)m>n.

【解析】

試題分析:(1)利用規(guī)定的運(yùn)算方法直接代入計(jì)算即可;

(2)利用規(guī)定的運(yùn)算方法得出方程,求得方程的解即可;

(3)利用規(guī)定的運(yùn)算方法得出m、n,再進(jìn)一步作差比較即可.

解:(1)(﹣2)3=﹣2×32+2×(﹣2)×3+(﹣2)

=﹣18﹣12﹣2

=﹣32;

(2)解:3=×32+2××3+=8(a+1)

8(a+1)(﹣

=8(a+1)×(﹣2+2×8(a+1)×(﹣)+8(a+1)

=8

解得:a=3;

(3)由題意m=2x2+2×2x+2=2x2+4x+2,

n=×32+2×x×3+=4x,

所以m﹣n=2x2+2>0.

所以m>n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2,過(guò)點(diǎn)A作射線AM與線段BD交于點(diǎn)M,BAM=α(0°<α<90°),作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱(chēng),連接CN.

(1)如圖,當(dāng)0°<α<45°時(shí),

依題意在圖中補(bǔ)全圖并證明:AM=CN 當(dāng)BDCN,求DM的值

(2)探究NCEBAM之間的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)5﹣(﹣2)+(﹣3)﹣(+4

(2)(﹣81)÷×÷(﹣

(3)(﹣)×(﹣)+(﹣)×(+

(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若順次連接四邊形的各邊中點(diǎn)所得的四邊形是菱形,則該四邊形一定是(  )

A. 矩形 B. 一組對(duì)邊相等,另一組對(duì)邊平行的四邊形

C. 對(duì)角線互相垂直的四邊形 D. 對(duì)角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE

1)求證:BE=CE

2)求BEC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市居民用水實(shí)行階梯收費(fèi),每戶(hù)每月用水量如果未超過(guò)20噸,按每噸元收費(fèi)如果超過(guò)20噸,未超過(guò)的部分按每噸元收費(fèi),超過(guò)的部分按每噸元收費(fèi)設(shè)某戶(hù)每月用水量為x噸,應(yīng)收水費(fèi)為y元.

設(shè)某戶(hù)居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

設(shè)某戶(hù)居民每月用水量為m,則應(yīng)收水費(fèi)為______用含m的代數(shù)式表示;

若該城市某戶(hù)5月份水費(fèi)平均為每噸元,求該戶(hù)5月份用水多少?lài)崳?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=α(30°<α<45°),∠AOB的余角為∠AOC,∠AOB的補(bǔ)角為∠BOD,OM平分∠AOC,ON平分∠BOD.

(1)OA可能在∠BOD的內(nèi)部,也可能在∠BOD的外部,請(qǐng)分兩種情況,在下圖中用直尺、量角器畫(huà)出射線OD,ON的準(zhǔn)確位置;

(2)當(dāng)α=40°時(shí),求(1)中∠MON的度數(shù),要求寫(xiě)出計(jì)算過(guò)程;

(3)用含α的代數(shù)式表示∠MON的度數(shù).(直接寫(xiě)出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD內(nèi)放入六個(gè)小正方形后形成一個(gè)中心對(duì)稱(chēng)圖形,其中頂點(diǎn)E、F分別在邊BC、AD上,則長(zhǎng)AD與寬AB的比值為( )

A.6:5
B.13:10
C.8:7
D.4:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點(diǎn)和點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫(xiě)出不等式的解集;

(3)若點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為C,問(wèn)是否在x下方存在一點(diǎn)D,使以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形是平行四邊形.若存在,直接寫(xiě)出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案