【題目】正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直,

(1)證明:RtABM RtMCN;

(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;

(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)RtABMRtAMN,求此時(shí)x的值.

【答案】(1)、證明過(guò)程見解析;(2)、y=;最大值為10;(3)、BC的中點(diǎn),x=2.

【解析】

試題分析:(1)、根據(jù)AMMN得出CMN+AMB= 90°,根據(jù)RtABM得出CMN=MAB,從而得出三角形相似;(2)、根據(jù)三角形相似得出CN與x的關(guān)系,然后根據(jù)梯形的面積計(jì)算法則得出函數(shù)解析式;(3)、根據(jù)要使三角形相似則需要滿足,結(jié)合(1)中的條件得出BM=CM,即M為BC的中點(diǎn).

試題解析:(1)在正方形ABCD中,AB=BC=CD=4,B=C =90°,

AMMN ∴∠AMN= 90°. ∴∠CMN+AMB= 90°

在RtABM中,MAB+AMB=90° ∴∠CMN=MAB. RtAMNRtMCN;

(2)RtABMRtMCN, CN=

y===

當(dāng)x=2時(shí),y取最大值,最大值為10;故當(dāng)點(diǎn)肘運(yùn)動(dòng)到BC的中點(diǎn)時(shí),四邊形ABCN的面積最大,最大面積為10;

(3)∵∠B=AMN= 90°, 要使RtABMRtAMN,必須

由(1)知 BM=MC

當(dāng)點(diǎn)M運(yùn)動(dòng)到BC的中點(diǎn)時(shí),RtABMRtAMN,此時(shí)x=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:∠MON=40°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)(A、B、C不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC= °.

(1)如圖1,若AB//ON,則①∠ABO的度數(shù);②當(dāng)∠BAD=∠ABD時(shí), =;③當(dāng)∠BAD=∠BDA時(shí), =
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-1,0)、C(0,1)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫出ABC關(guān)于y軸的軸對(duì)稱圖形A1B1C1;

(2)以點(diǎn)O為位似中心,在網(wǎng)格內(nèi)畫出所有符合條件的A2B2C2,使A2B2C2 A1B1C1位似,且位似比為2:1;

(3)求A1B1C1A2B2C2的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】生物課題研究小組對(duì)附著在物體表面的三個(gè)微生物(課題組成員把他們分別標(biāo)號(hào)為1,2,3)的生長(zhǎng)情況進(jìn)行觀察記錄,這三個(gè)微生物第一天各自一分為二,產(chǎn)生新的微生物(依次被標(biāo)號(hào)為4,5,6,7,8,9),接下去每天都按照這樣的規(guī)律變化,即每個(gè)微生物一分為二,形成新的微生物(課題組成員用如圖所示的圖形進(jìn)行形象的記錄),那么標(biāo)號(hào)為1000的微生物會(huì)出現(xiàn)在( )

A.第7天
B.第8天
C.第9天
D.第10天

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知A(10,0)AOP為等腰三角形且面積為25,滿足條件的P點(diǎn)有

A. 12個(gè) B. 10個(gè) C. 8個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P在第四象限,且到x軸的距離是3,到y(tǒng)軸的距離是2,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋中裝有除顏色外均相同的8個(gè)黑球、4個(gè)白球和若干個(gè)紅球.每次搖勻后隨機(jī)摸出一個(gè)球,記下顏色后再放回袋中,通過(guò)大量重復(fù)摸球試驗(yàn)后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計(jì)袋中約有紅球個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把四張形狀大小完全相同的小長(zhǎng)方形卡片不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為a , 寬為b)的盒子底部,盒子底面未被卡片覆蓋的部分用陰影表示,則這兩塊陰影部分小長(zhǎng)方形周長(zhǎng)的和為(
A.a+2b
B.4a
C.4b
D.2a+b

查看答案和解析>>

同步練習(xí)冊(cè)答案