【題目】如圖,是的直徑,點(diǎn)為上一點(diǎn),和過點(diǎn)的切線互相垂直,垂足為,交于點(diǎn),直線交的延長線于點(diǎn),連接,,.
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/22/2490290299265024/2493010512216064/STEM/6108b9d591da4e268d6d47ef4c154d16.png]
(1)求證:平分;
(2)探究線段,之間的數(shù)量關(guān)系,并說明理由;
(3)若,求的面積.
【答案】(1)見解析;(2),見解析;(3)5
【解析】
(1)連接,根據(jù)切線的性質(zhì)可得,然后根據(jù)平行線的判定可得,從而證出,根據(jù)等邊對等角可得,從而證出,即可證出結(jié)論;
(2)根據(jù)直徑所對的圓周角是直角可得,然后根據(jù)相似三角形的判定定理證出,列出比例式即可得出結(jié)論;
(3)過點(diǎn)作于點(diǎn),根據(jù)相似三角形的判定定理可得,列出比例式即可求出OC,再根據(jù),可得,最后根據(jù)勾股定理即可求出AC、BC,從而求出結(jié)論.
解:(1)證明:連接,
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/22/2490290299265024/2493010512216064/EXPLANATION/c5818ff65a8a4699839c8defaae65c25.png]
∵是的切線,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴平分;
(2)線段,之間的數(shù)量關(guān)系為:.
理由:∵是的直徑,
∴,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴
∵,
∴,
∴,
∴
(3)過點(diǎn)作于點(diǎn),
則,四邊形是矩形,
∴,
∴
∵,
∴,
∴,
∵,,
∴,
∴
∴,
∴,
∵,
∴,
∴
在中,
∴
∴,
∴
∴
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/22/2490290299265024/2493010512216064/EXPLANATION/091db14000a2430dbf23cdd5aaba7021.png]
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的對稱中心為坐標(biāo)原點(diǎn),軸于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),經(jīng)過、兩點(diǎn)的函數(shù)的圖象記為,函數(shù)的圖象記為,其中是常數(shù),圖象、合起來得到的圖象記為.設(shè)矩形的周長為.
(1)當(dāng)點(diǎn)的橫坐標(biāo)為-1時(shí),求的值;
(2)求與之間的函數(shù)關(guān)系式;
(3)當(dāng)與矩形恰好有兩個(gè)公共點(diǎn)時(shí),求的值;
(4)設(shè)在上最高點(diǎn)的縱坐標(biāo)為,當(dāng)時(shí),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某無人機(jī)于空中處探測到目標(biāo)的俯角分別是,此時(shí)無人機(jī)的飛行高度為,隨后無人機(jī)從處繼續(xù)水平飛行m到達(dá)處.
(1)求之間的距離
(2)求從無人機(jī)上看目標(biāo)的俯角的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展了防疫知識的宣傳教育活動.為了解這次活動的效果,學(xué)校從全校1500名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行知識測試(測試滿分100分,得分x均為不小于60的整數(shù)),并將測試成績分為四個(gè)等第:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),優(yōu)秀(90≤x≤100),制作了如圖統(tǒng)計(jì)圖(部分信息未給出).
由圖中給出的信息解答下列問題:
(1)求測試成績?yōu)楹细竦膶W(xué)生人數(shù),并補(bǔ)全頻數(shù)直方圖.
(2)求扇形統(tǒng)計(jì)圖中“良好”所對應(yīng)的扇形圓心角的度數(shù).
(3)這次測試成績的中位數(shù)是什么等第?
(4)如果全校學(xué)生都參加測試,請你根據(jù)抽樣測試的結(jié)果,估計(jì)該校獲得優(yōu)秀的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是斜邊上的中線,將沿直線翻折至的位置,連接,若∥.計(jì)算的長度等于___________.
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/22/2490290299265024/2493010512117760/STEM/0e34dfb35fee4b78a4f71960876ffe14.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠水青山就是金山銀山,國家倡導(dǎo)全民植樹。在今年3月12日植樹節(jié)當(dāng)天,某校七年級一班48名學(xué)生全部參加了植樹活動,男生每人栽種4株,女生每人栽種3株,全班共栽種170株。
(1)該班男、女生各為多少人?
(2)學(xué)校選擇購買甲、乙兩種樹苗,甲樹苗 ,乙樹苗 .如果要使購買樹苗的錢不超過1200元,那么最多可以購買甲樹苗多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是斜邊上的中線,以為直徑的分別交、于點(diǎn)、,過點(diǎn)作,垂足為.
(1)若的半徑為,,求的長;
(2)求證:與相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線是拋物線的一部分,與軸交于兩點(diǎn),與軸交于點(diǎn),且表達(dá)式,曲線與曲線關(guān)于直線對稱.
(1)求三點(diǎn)的坐標(biāo)和曲線的表達(dá)式;
(2)過點(diǎn)作軸交曲線于點(diǎn),連結(jié),在曲線.上有一點(diǎn),使得四邊形為箏形(如果一個(gè)四邊形的一條對角線被另一條對角線垂直平分,這樣的四邊形為箏形),請求出點(diǎn)的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司購進(jìn)一批受環(huán)境影響較大的商品,需要在特定的環(huán)境中才能保存,已知該商品成本y(元/件)與保存的時(shí)間第x(天)之間的關(guān)系滿足y=x2﹣4x+100,該商品售價(jià)p(元/件)與保存時(shí)間第x(天)之間滿足一次函數(shù)關(guān)系,其對應(yīng)數(shù)據(jù)如表:
x(天) | …… | 5 | 7 | …… |
p(元/件) | …… | 248 | 264 | …… |
(1)求商品的售價(jià)p(元/件)與保存時(shí)間第x(天)之間的函數(shù)關(guān)系式;
(2)求保存第幾天時(shí),該商品不賺也不虧;
(3)請你幫助該公司確定在哪一天賣出,每件商品能獲得最大利潤,此時(shí)每件商品的售價(jià)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com