【題目】⑴ 閱讀理解

問題1:已知a、b、c、d為正數(shù),,ac=bd,試說明a=d,b=c.

我們通過構(gòu)造幾何模型解決代數(shù)問題. 注意到條件,如果把a、b、c、d分別看作為兩個直角三角形的直角邊,那么可構(gòu)造圖1所示的幾何模型.

∵ac=bd,

∴AB·CD=BC·AD

請你按照以上思路繼續(xù)完成說明.

⑵ 深入探究

問題2:若a>0,b>0,試比較的大小.

為此我們構(gòu)造圖2所示的幾何模型,其中AB為直徑, O為圓心,點C在半圓上,CD⊥AB 于D,AD=a,BD=b.

請你利用圖2所示的幾何模型解決提出的問題2

⑶ 拓展運用

對于函數(shù)y=x+,求當(dāng)x>0時,求y的取值范圍.

【答案】(1)a=d,b=c(2) (3)y≥6

【解析】(1)根據(jù)兩邊對應(yīng)成比例且夾角相等,兩個三角形相似的判定定理可得△ADC∽△ABC ,再利用△ADC≌△ABC 可得出結(jié)論;(2)分兩種情況:當(dāng)OD不重合時得出>;當(dāng)點OD重合時=即可得出結(jié)論;(3)(2)的結(jié)論>,可得,從而得出結(jié)果.

⑴又∵∠B=∠D =90°

∴△ADC∽△ABC

∠DAC=∠BAC,

又AC=AC, ∴△ADC≌△ABC ∴AB=AD,BC=DC,

即:a=d, b=c.

⑵連接AC、BC,則由△ADC∽△CDB得

過點O作交半圓于點E,連接OE,則半徑

∵OE ≥ CD, ∴

,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過DDE⊥AC,垂足為E.

(1)證明:DE⊙O的切線;

(2)連接OE,若BC=8,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)有( )

①-a一定是負(fù)數(shù);②|-a|一定是正數(shù);③倒數(shù)等于它本身的數(shù)是±1;

④絕對值等于它本身的數(shù)是1;⑤兩個有理數(shù)的和一定大于其中每一個加數(shù);⑥若 ,則a=b.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組,利用樹影測量樹高,如圖(1),已測出樹AB的影長AC12米,并測出此時太陽光線與地面成30°夾角.

1)求出樹高AB;

2)因水土流失,此時樹AB沿太陽光線方向倒下,在傾倒過程中,樹影長度發(fā)生了變化,假設(shè)太陽光線與地面夾角保持不變.求樹的最大影長.(用圖(2)解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校美術(shù)組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.

1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?

2)小亮同學(xué)用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BCCA,AB上的點,DEBA,DFCA.求證:∠FDE=∠A

證明:∵DEAB

∴∠FDE=∠      

DFCA,

∴∠A=∠      

∴∠FDE=∠A   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知,

1)畫的垂直平分線、于點(保留作圖痕跡,作圖痕跡請加黑描重);

2)求的度數(shù);

3)若,求的長度.

查看答案和解析>>

同步練習(xí)冊答案