【題目】如下圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),

1)在圖中作出線段AB以二四象限的角平分線為對(duì)稱軸的對(duì)稱線段CD,并直接寫出四邊形ABDC的面積為

2)若點(diǎn)C為格點(diǎn)(橫縱坐標(biāo)均為整數(shù)),且ABOC,AB=OC,作出線段OC;并寫出C點(diǎn)坐標(biāo)為 .

【答案】1;(2)(-4,-3)或(4,3.

【解析】

1)通過軸對(duì)稱的特點(diǎn)畫出線段CD,求四邊形ABCD的面積即為△ABC和△BCD的面積和找到C點(diǎn)的位置,注意要考慮左右兩種情況,并寫出坐標(biāo)即可;

2)通過ABOC,AB=OC和找到C點(diǎn)的位置,注意要考慮左右兩種情況,并寫出坐標(biāo)即可.

解:(1)如圖,

四邊形ABDC的面積為

2)如圖,C點(diǎn)在如圖所示的兩個(gè)位置,

坐標(biāo)為(-4,-3)或(4,3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,ABAC,∠B36°,D、EBC上兩點(diǎn),且∠ADE=∠AED2BAD,則圖中等腰三角形共有( 。

A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出如下收費(fèi)標(biāo)準(zhǔn):

如果人數(shù)不超過人,人均旅游費(fèi)用為元;

如果人數(shù)超過人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.

某單位共付給該旅行社旅游費(fèi)用元,問:該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AEABBC于點(diǎn)E,∠BAC=120°AE=3cm,則BC的長是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,以為直徑的,,,點(diǎn)延長線上的一點(diǎn),延長交,.小華得出個(gè)結(jié)論:;②;③

其中正確的是(

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以為直徑的半圓交于點(diǎn),與交于點(diǎn),連接,過點(diǎn),垂足為點(diǎn)

求證:;

判斷的位置關(guān)系,并說明理由;

的直徑為,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi)有一等腰RtABC,ACB=90°,點(diǎn)A在直線l上.過點(diǎn)CCE1于點(diǎn)E,過點(diǎn)BBFl于點(diǎn)F,測量得CE=3,BF=2,則AF的長為(  )

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A0,6)的直線AB與直線OC相交于點(diǎn)C24)動(dòng)點(diǎn)P沿路線OCB運(yùn)動(dòng).(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的時(shí),求出這時(shí)點(diǎn)P的坐標(biāo);(3)是否存在點(diǎn)P,使△OBP是直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=x+1的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B0,﹣1),與x軸以及y=x+1的圖象分別交于點(diǎn)CD,且點(diǎn)D的坐標(biāo)為(1n),

1)求一次函數(shù)y=kx+b的函數(shù)關(guān)系式

2)求四邊形AOCD的面積;

3)是否存在y軸上的點(diǎn)P,使得以BD為底的△PBD等腰三角形?若存在求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案