【題目】嘉淇同學用配方法推導一元二次方程ax2+bx+c=0(a≠0)的求根公式時,對于b2﹣4ac>0的情況,她是這樣做的:
由于a≠0,方程ax2+bx+c=0變形為:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法從第 步開始出現錯誤;事實上,當b2﹣4ac>0時,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=x2+2x﹣3的圖象如圖所示,點A(x1,y1),B(x2,y2)是該二次函數圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結論正確的是( 。
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.動點P從點D出發(fā),沿射線DA的方向以每秒2個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點Q運動到點B時,點P隨之停止運動.設運動的時間為t(秒).
(1)設△BPQ的面積為S,求S與t之間的函數關系式;
(2)當t為何值時,以B、P、Q三點為頂底的三角形是等腰三角形?
(3)當線段PQ與線段AB相交于點O,且2AO=OB時,求∠BQP的正切值;
(4)是否存在時刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,CE是中線,△ACD與△ACE關于直線AC對稱.
(1)求證:四邊形ADCE是菱形;
(2)求證:BC=ED.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用公式法解下列方程
(1)x=4x2+2 (2)-x 2+5x-4=0
(3)7x2 -28x +7= 0 (4)(x+1)(x+8)=-12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根x1,x2.
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com