【題目】某市為節(jié)約水資源,制定了新的居民用水收費標準,按照新標準,用戶每月繳納的水費y元與每月用水量xm3之間的關系如圖所示.
(1)求關于x的函數(shù)解析式;
(2)若某用戶二、三月份共用水22m3(二月份用水量比三月份用水量多),繳納水費共35元,則該用戶二月份的用水量是多少m3?
【答案】(1)y=;(2)該用戶二、三月份的用水量各是8m3、14m3.
【解析】
(1)根據(jù)函數(shù)圖象可以分別設出各段的函數(shù)解析式,然后根據(jù)函數(shù)圖象中的數(shù)據(jù)求出相應的函數(shù)解析式;
(2)根據(jù)題意對x進行取值進行討論,從而可以求得該用戶二、三月份的用水量各是多少m3.
解:(1)當0≤x≤10時,設y與x的函數(shù)關系式為y=kx,
10k=15,得k=1.5,
即當0≤x≤10時,y與x的函數(shù)關系式為y=1.5x,
當x>10時,設y與x的函數(shù)關系式為y=ax+b,
,得,
即當x>10時,y與x的函數(shù)關系式為y=2x﹣5,
由上可得,y與x的函數(shù)關系式為y=;
(2)設二月份的用水量是xm3,
當10<x≤15時,2x﹣5+2(22﹣x)﹣5=35,
解得,x無解,
當0<x≤10時,1.5x+2(22﹣x)﹣5=35,
解得,x=8,
∴22﹣x=14,
答:該用戶二、三月份的用水量各是8m3、14m3.
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB為⊙O的直徑,P為AB延長線上的任意一點,過點P作⊙O的切線,切點為C,∠APC的平分線PD與AC交于點D.
(1)如圖1,若∠CPA恰好等于30°,求∠CDP的度數(shù);
(2)如圖2,若點P位于(1)中不同的位置,(1)的結論是否仍然成立?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.
(1)判斷線段AB與DE的數(shù)量關系和位置關系,并說明理由;
(2)連接BD、BE,若設BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是 的中點,連接AC、BC,則圖中陰影部分面積是( )
A. ﹣2
B. ﹣2
C. ﹣
D. ﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的個數(shù)有( )
①-a一定是負數(shù);②|-a|一定是正數(shù);③倒數(shù)等于它本身的數(shù)是±1;
④絕對值等于它本身的數(shù)是1;⑤兩個有理數(shù)的和一定大于其中每一個加數(shù);⑥若 ,則a=b.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸是一個非常重要的數(shù)學工具,通過它把數(shù)和數(shù)軸上的點建立起對應關系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結合”的基礎.已知數(shù)軸上有點A和點B,點A和點B分別表示數(shù)-20和40,請解決以下問題:
(1)請畫出數(shù)軸,并標明A、B兩點;
(2)若點P、Q分別從點A、點B同時出發(fā),相向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當P、Q相遇于點C時,C所對應的數(shù)是多少?
(3)若點P、Q分別從點A、點B同時出發(fā),沿x軸正方向同向而行,點P、Q移動的速度分別為每秒4個單位長度和2個單位長度.問:當P、Q相遇于點D時,D所對應的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為某校九年級男子立定跳遠成績的統(tǒng)計圖,從左到右各分數(shù)段的人數(shù)之比為1∶2∶5∶6∶4,第四組的頻數(shù)是12.有下面的4個結論:
①一共測試了36名男生的成績;②男子立定跳遠成績的中位數(shù)分布在1.8~2.0組;③男子立定跳遠成績的平均數(shù)不超過2.2;④如果男子立定跳遠成績低于1.85 m為不合格,那么不合格人數(shù)為6人.
其中結論正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=3,BC=8,點D為BC的中點,將△ABD沿AD折疊,使點B落在點E處,連接CE,則CE的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的點(不與點B、C重合),連結AD.
問題引入:
(1)如圖①,當點D是BC邊上的中點時,S△ABD:S△ABC=;當點D是BC邊上任意一點時,S△ABD:S△ABC=(用圖中已有線段表示).
(2)如圖②,在△ABC中,O點是線段AD上一點(不與點A、D重合),連結BO、CO,試猜想S△BOC與S△ABC之比應該等于圖中哪兩條線段之比,并說明理由.
(3)如圖③,O是線段AD上一點(不與點A、D重合),連結BO并延長交AC于點F,連結CO并延長交AB于點E,試猜想 + + 的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com