【題目】已知:如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B,E分別是x軸和y軸上的任意點(diǎn). BD是∠ABE的平分線,BD的反向延長(zhǎng)線與∠OAB的平分線交于點(diǎn)C.
探究: (1)求∠C的度數(shù).
發(fā)現(xiàn): (2)當(dāng)點(diǎn)A,點(diǎn)B分別在x軸和y軸的正半軸上移動(dòng)時(shí),∠C的大小是否發(fā)生變化?若不變,請(qǐng)直接寫(xiě)出結(jié)論;若發(fā)生變化,請(qǐng)求出∠C的變化范圍.
應(yīng)用:(3)如圖2在五邊形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延長(zhǎng)線與∠EDC外角的平分線相交于點(diǎn)P,求∠P的度數(shù).
【答案】(1)∠C=45°;(2)不變.∠C=∠AOB =45°; (3) 25°.
【解析】
(1)先確定∠ABE與∠OAB的關(guān)系,∠ABE=∠OAB+90°,再根據(jù)角平分線和三角形的外角求得∠ACB的度數(shù);
(2)設(shè)∠DBC=x,∠BAC=y,再根據(jù)BC平分∠DBO,AC平分∠BAO可知∠CBO=∠DBC=x,∠OAC=∠BAC=y.再由∠DBO是△AOB的外角,∠DBC是△ABC的外角可得出關(guān)于x、y,∠C的方程組,求出∠C的值即可;
(3)延長(zhǎng)ED,BC相交于點(diǎn)G,易求∠G的度數(shù),由三角形外角的性質(zhì)可得結(jié)論.
(1)∵∠ABE=∠OAB+∠AOB,∠AOB =90°,
∴∠ABE=∠OAB+90°,
∵BD是∠ABE的平分線,AC平分∠OAB,
∴∠ABE=2∠ABD,∠OAB=2∠BAC,
∴2∠ABD=2∠BAC+90°,
∴∠ABD=∠BAC+45°,
又∵∠ABD= ∠BAC +∠C,
∴∠C=45°.
(2)不變.∠C=∠AOB =45°.
理由如下:
設(shè)∠DBA=x,∠BAC=y,
∵BD平分∠EBA,AC平分∠BAO.
∴∠EBD=∠DBA=x,∠OAC=∠BAC=y.
∵∠EBA是△AOB的外角,∠DBA是△ABC的外角,
∴,
∴∠C=45°.
(3) 延長(zhǎng)ED,BC相交于點(diǎn)G.
在四邊形ABGE中,
∵∠G=360°-(∠A+∠B+∠E)=50°,
∴∠P=∠FCD-∠CDP= (∠DCB-∠CDG)
=∠G=×50°=25°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC,則下列結(jié)論:①abc>0;②9a+3b+c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為 -,其中正確的結(jié)論個(gè)數(shù)有_____________________ (填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和都是等邊三角形,,點(diǎn)分別是,的中點(diǎn),連結(jié),,當(dāng),,時(shí),的長(zhǎng)度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,,,,且以為頂點(diǎn)的四邊形為菱形.
(1)直接寫(xiě)出點(diǎn)的坐標(biāo);
(2)請(qǐng)用無(wú)刻度直尺作直線,使直線經(jīng)過(guò)點(diǎn)且平分菱形的面積,保留作圖痕跡(若無(wú)法打印答題卡,不便于規(guī)范作圖,請(qǐng)用幾何語(yǔ)言直接描述具體的作圖過(guò)程代替作圖);
(3)已知點(diǎn)是邊上一點(diǎn),若線段將菱形的面積分為兩部分,直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園草坪的防護(hù)欄由100段形狀相同的拋物線形構(gòu)件組成,為了牢固起見(jiàn),每段護(hù)欄需要間距0.4m加設(shè)一根不銹鋼的支柱,防護(hù)欄的最高點(diǎn)距底部0.5m(如圖),則這條防護(hù)欄需要不銹鋼支柱的總長(zhǎng)度至少為( )
A. 50m B. 100m C. 160m D. 200m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明租用共享單車從家出發(fā),勻速騎行到相距2400米的郵局辦事.小明出發(fā)的同時(shí),他的爸爸以每分鐘100米的速度從郵局沿同一條道路步行回家,小明在郵局停留了2分鐘后沿原路按原速返回.設(shè)他們出發(fā)后經(jīng)過(guò)t(分)時(shí),小明與家之間的距離為s1(米),小明爸爸與家之間的距離為s2(米),圖中折線OABD,線段EF分別表示s1,s2與t之間的函數(shù)關(guān)系的圖象.
(1)求s1與t之間的函數(shù)表達(dá)式;
(2)小明從家出發(fā),經(jīng)過(guò)_______分在返回途中追上爸爸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校2800名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)取整數(shù),總分100分)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
根據(jù)所給信息,解答下列問(wèn)題:
(1)在這個(gè)問(wèn)題中,有以下說(shuō)法:①2800名學(xué)生是總體;②200名學(xué)生的成績(jī)是總體的一個(gè)樣本;③每名學(xué)生是總體的一個(gè)個(gè)體;④樣本容量是200;⑤以上調(diào)查是全面調(diào)查.其中正確的說(shuō)法是 (填序號(hào))
(2) 統(tǒng)計(jì)表中m= ,n= ;
(3) 補(bǔ)全頻數(shù)分布直方圖;
(4) 若成績(jī)?cè)?/span>90分以上(包括90分)為優(yōu)等,請(qǐng)你估計(jì)該校參加本次比賽的2800名學(xué)生中成績(jī)是優(yōu)等的約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中AD∥BC, ∠B=60°,AB=AD=BO=4cm,OC=8cm, 點(diǎn)M從B點(diǎn)出發(fā),按從B→A→D→C的方向,沿四邊形BADC的邊以1cm/s的速度作勻速運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.若運(yùn)動(dòng)的時(shí)間為t,△MOD的面積為y,則y關(guān)于t的函數(shù)圖象大約是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分線,與邊BC交于點(diǎn)F.求∠EAF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com