【題目】在數(shù)列{an}中,a2=
(1)若數(shù)列{an}滿足2an﹣an+1=0,求an;
(2)若a4= ,且數(shù)列{(2n﹣1)an+1}是等差數(shù)列,求數(shù)列{ }的前n項(xiàng)和Tn

【答案】
(1)解:∵數(shù)列{an}滿足2an﹣an﹣1=0,a2=

∴an≠0, =2,∴a1=

∴數(shù)列{an}是等比數(shù)列,公比為2,首項(xiàng)為

∴an=


(2)解:數(shù)列{(2n﹣1)an+1}是等差數(shù)列,設(shè)公差為d,∵a4= ,a2=

+1= +1+2d,解得d=1.

∴(2n﹣1)an+1=3× +1+(n﹣2)×1,解得an=

=2n﹣1.

∴數(shù)列{ }的前n項(xiàng)和Tn=1+3+…+(2n﹣1)

= =n2


【解析】(1)數(shù)列{an}滿足2an﹣an﹣1=0,a2= .可得an≠0, =2,利用等比數(shù)列的通項(xiàng)公式即可得出an . (2)數(shù)列{(2n﹣1)an+1}是等差數(shù)列,設(shè)公差為d,由a4= ,a2= .利用等差數(shù)列的通項(xiàng)公式可得d.進(jìn)而可得an . 再利用等差數(shù)列的求和公式即可得出.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( 。

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(4,3),點(diǎn)A、C在坐標(biāo)軸上,點(diǎn)P在BC邊上,直線l1:y=2x+3,直線l2:y=2x﹣3.

(1)分別求直線l1與x軸,直線l2與AB的交點(diǎn)坐標(biāo);
(2)已知點(diǎn)M在第一象限,且是直線l2上的點(diǎn),若△APM是等腰直角三角形,求點(diǎn)M的坐標(biāo);
(3)我們把直線l1和直線l2上的點(diǎn)所組成的圖形為圖形F.已知矩形ANPQ的頂點(diǎn)N在圖形F上,Q是坐標(biāo)平面內(nèi)的點(diǎn),且N點(diǎn)的橫坐標(biāo)為x,請直接寫出x的取值范圍(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題: ①回歸直線 恒過樣本中心點(diǎn) ;
②“x=6”是“x2﹣5x﹣6=0”的必要不充分條件;
③“x0∈R,使得x02+2x0+3<0”的否定是“對x∈R,均有x2+2x+3>0”;
④“命題p∨q”為真命題,則“命題p∧q”也是真命題.
其中真命題的個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3 x2+logax,(a>0且a≠1)為定義域上的增函數(shù),f'(x)是函數(shù)f(x)的導(dǎo)數(shù),且f'(x)的最小值小于等于0. (Ⅰ)求a的值;
(Ⅱ)設(shè)函數(shù) ,且g(x1)+g(x2)=0,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 ,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C 的極坐標(biāo)方程為
(1)寫出直線l的普通方程及圓C 的直角坐標(biāo)方程;
(2)點(diǎn)P是直線l上的,求點(diǎn)P 的坐標(biāo),使P 到圓心C 的距離最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 ,數(shù)列 的前n項(xiàng)和為Sn , 數(shù)列{bn}的通項(xiàng)公式為bn=n﹣8,則bnSn的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,BD=2AD=8,AB=4
(Ⅰ)證明:平面PBD⊥平面PAD;
(Ⅱ)求二面角B﹣PA﹣D的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,則四邊形ABCD面積是

查看答案和解析>>

同步練習(xí)冊答案