【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,ABA1C1相交于點D,ACA1C1、BC1分別交于點E. F.

(1)求證:△BCF≌△BA1D.

(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由。

【答案】(1)證明見解析(2)四邊形A1BCE是菱形

【解析】試題分析:(1)根據(jù)等腰三角形的性質得到AB=BC,∠A=∠C,由旋轉的性質得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋轉的性質得到∠A1=∠A,根據(jù)平角的定義得到∠DEC=180°﹣α,根據(jù)四邊形的內(nèi)角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,證得四邊形A1BCE是平行四邊形,由于A1B=BC,即可得到四邊形A1BCE是菱形.

試題解析:(1)證明:∵△ABC是等腰三角形,

∴AB=BC,∠A=∠C,

將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,

∴A1B=AB=BC∠A=∠A1=∠C,∠A1BD=∠CBC1

△BCF△BA1D中,

,

∴△BCF≌△BA1D;

2)解:四邊形A1BCE是菱形,

將等腰△ABC繞頂點B逆時針方向旋轉α度到△A1B1C1的位置,

∴∠A1=∠A

∵∠ADE=∠A1DB,

∴∠AED=∠A1BD=α,

∴∠DEC=180°﹣α,

∵∠C=α,

∴∠A1,

∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,

∴∠A1=∠C,∠A1BC=∠AEC

四邊形A1BCE是平行四邊形,

∴A1B=BC

四邊形A1BCE是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】己知一次函數(shù)

1)無論 k為何值,函數(shù)圖像必過定點,求該點的坐標;

2)如圖 1,當 k=-時,該直線交 x 軸,y 軸于 AB 兩點,直線 l2:y=x+1 AB 于點 P,點 Q l2 上一點,若 SABQ 6 ,求 Q 點的坐標;

3)如圖 2,在第 2 問的條件下,已知 D 點在該直線上,橫坐標為 1,C 點在 x 軸負半軸, ABC=45 ,動點 M 的坐標為(a,a),求 CM+MD 的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,外一點,平分,且,則的度數(shù)為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個質地均勻的正四面體的四個面上依次標有數(shù)字-2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點的橫、縱坐標,則點M(a,b)落在以A(-2,0),B(2,0),C(0,2)為頂點的三角形內(nèi)(包含邊界)的概率是(  )

A. B. C D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為了了解七年級學生一分鐘跳繩情況,隨機對七年級男生、女生進行抽樣調查。已知抽取的樣本中男生、女生人數(shù)相同,對測試結果統(tǒng)計后繪制了如下不完整統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題.

組別

次數(shù)

A

B

C

D

E

1)樣本中男生共有________人,女生一分鐘跳繩次數(shù)在 組的人數(shù)有________人;

2)扇形統(tǒng)計圖中 組圓心角的度數(shù)為________;

3)若該校七年級有男生280人,女生300人,請你估計該校七年級學生跳繩次數(shù)在 的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點在第一象限, 軸于, 軸于, ,且四邊形 的面積為48.

1)如圖1,直接寫出點A、B、O、C的坐標:

2)如圖2,點 出發(fā)以每秒1個單位的速度沿 軸正半軸運動,同時點 從B出發(fā),以每秒2個單位的速度沿射線 運動, 交線段 ,設運動的時間為 ,當 時,求的取值范圍;

3)如圖3,將線段 平移,使點的對應點恰好落在軸負半軸上,點的對應點為,連 軸交于 ,當 時,求點的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場正在銷售、兩種型號玩具,已知購買一個型玩具和兩個型玩具共需元;購買兩個型玩具和一個型玩具共需.

1)求一個型玩具和一個型玩具的價格各是多少元?

2)我公司準備購買這兩種型號的玩具共個送給幼兒園,且購買金額不能超過元,請你幫該公司設計購買方案?

3)在(2)的前提下,若要求、兩種型號玩具都要購買,且費用最少,請你選擇一種最佳的設計方案,并通過計算說明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分)在菱形中, , ,點是線段上的一個動點.

)如圖①,求的最小值.

)如圖②,若也是邊上的一個動點,且,求的最小值.

)如圖③,若,則在菱形內(nèi)部存在一點,使得點分別到點、點、邊的距離之和最。埬惝嫵鲞@樣的點,并求出這個最小值.

查看答案和解析>>

同步練習冊答案