【題目】解答下列各題:
(1)解方程:
(2)先化簡,再求值:,其中滿足
【答案】(1)原方程無解;(2)
【解析】
(1)因為x-4= (x+2) (x-2),所以可確定方程最簡公分母為(x+2) (x-2),方程兩邊同乘(x+2)(x-2) ,去分母將分式方程轉(zhuǎn)化為整式方程即可求解;
(2)先把括號內(nèi)的分母分解因式,同時把除法變成乘法,根據(jù)分式的乘法法則進行計算,再通分進行分式的減法計算,最后代入求出即可.
解:(1)方程兩邊同乘(x + 2)(x- 2),得
(x-2)=(x+2)+16,
展開整理得- 8x= 16 ,
解得: x=-2.
檢驗:將x=-2代入(x + 2)(x- 2)= 0,
∴x=-2是增根,
∴原方程無解.
(2)原式=
∵
∴
∴原式=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折(折扣相同),其余兩次均按標(biāo)價購買.三次購買商品A、B的數(shù)量和費用如下表:
購買商品A的數(shù)量/個 | 購買商品B的數(shù)量/個 | 購買總費用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第 次購物;
(2)求出商品A、B的標(biāo)價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長為6,∠A=60°.取菱形各邊中點并順次連接這四個點,得到四邊形,再取四邊形各邊中點,順次連接得到四邊形……以此類推,則四邊形的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,,,是邊上的中點,點、分別在、邊上運動,且保持,連接、、.在此運動變化的過程中,下列結(jié)論:①是等腰直角三角形;②四邊形不可能為正方形;③;④四邊形的面積保持不變;⑤面積最大值為8,其中正確的結(jié)論是___________(填番號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個由小正方體組成的幾何體的左視圖和俯視圖.
(1)該幾何體最少需要幾塊小正方體?
(2)最多可以有幾塊小正方體?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個可以自由轉(zhuǎn)動的質(zhì)地均勻轉(zhuǎn)盤、都被分成了個全等的扇形,在每一扇形內(nèi)均標(biāo)有不同的自然數(shù),如圖所示.轉(zhuǎn)動轉(zhuǎn)盤、,兩個轉(zhuǎn)盤停止后觀察兩個指針?biāo)干刃蝺?nèi)的數(shù)字(若指針停在扇形的邊線上,當(dāng)作指向下方的扇形).
(1)小明同學(xué)轉(zhuǎn)動轉(zhuǎn)盤,小華同學(xué)轉(zhuǎn)動轉(zhuǎn)盤,他們都轉(zhuǎn)了次,結(jié)果如下:
指針停靠的扇形內(nèi)的數(shù)字 | ||||||
出現(xiàn)的次數(shù) |
求出表中的值.
計算盤中“指針?康纳刃蝺(nèi)的數(shù)字為”的頻率;
(2)小明轉(zhuǎn)動盤一次,指針停靠的扇形內(nèi)的數(shù)字作為十位數(shù)字,小華轉(zhuǎn)動盤一次,指針?康纳刃蝺(nèi)的數(shù)字作為個位數(shù)字,用列表或畫樹狀圖的方法求出“所得的兩位數(shù)為的倍數(shù)”(記為事件)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com