【題目】取一張正方形的紙片進(jìn)行折疊,具體操作過(guò)程如下:
第一步:如圖1,先把正方形ABCD對(duì)折,折痕為MN.
第二步:點(diǎn)G在線段 MD上,將△GCD沿GC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP.
(1)判斷△PBC的形狀,并說(shuō)明理由;
(2)作點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)C′,連接PC′、DC′.
①在圖2中補(bǔ)全圖形,并求出∠APC′的度數(shù);
②猜想∠PC′D的度數(shù),并加以證明;(溫馨提示:當(dāng)你遇到困難時(shí),不妨連接AC′、CC′,研究圖形中特殊的三角形)
【答案】
(1)解:△PBC是等邊三角形,理由如下:
∵四邊形ABCD是正方形,
∴AB=BC=CD,∠ABC=90°,
由折疊的性質(zhì)得:BN=NC= BC= PC,MN⊥BC,
∴PB=PC,∠PNC=90°,
在Rt△PNC中,sin∠NPC= = ,
∴∠NPC=30°,
∴∠PCB=60°,
∴△PBC是等邊三角形
(2)解:①補(bǔ)全圖形如圖2所示:
由①得:∠PCB=∠PBC=∠BPC=60°,PB=PC=BC,
∵∠ABC=90°,
∴∠ABP=90°﹣60°=30°,
∵AB=BC,
∴AB=PB,
∴∠BAP=∠BPA= (180°﹣30°)=75°,
∴∠APC=∠BPA+∠BPC=75°+60°=135°,
∵C關(guān)于直線AP的對(duì)稱點(diǎn)為C′,
∴∠APC'=∠APC=135°;
②連接AC',CC',如圖3所示:
由對(duì)稱的性質(zhì)得:AC=AC',∠CAP=∠C'AP=30°,
∴∠CAC'=60°,
∴△CAC'是等邊三角形,
∴AC'=CC',∠AC'C=60°,
在△AC'D和△CC'D中, ,
∴△AC'D≌△CC'D(SSS),
∴∠AC'D=∠CC'D= ∠AC'C=30°,
∵∠AC'P=∠ACP=15°,
∴∠PC'D=15°.
【解析】(1)由正方形的性質(zhì)得出AB=BC=CD,∠ABC=90°,由折疊的性質(zhì)得:BN=NC= BC= PC,MN⊥BC,得出PB=PC,∠PNC=90°,在Rt△PNC中,由三角函數(shù)得出sin∠NPC= = ,求出∠NPC=30°,得出∠PCB=60°,即可得出結(jié)論;(2)①根據(jù)題意補(bǔ)全圖形,由①得:∠PCB=∠PBC=∠BPC=60°,PB=PC=BC,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理得出∠BAP=∠BPA=75°,求出∠APC=∠BPA+∠BPC=135°,再由得出的性質(zhì)得出∠APC'=∠APC=135°;②由對(duì)稱的性質(zhì)得:AC=AC',∠CAP=∠C'AP=30°,證出△CAC'是等邊三角形,得出AC'=CC',∠AC'C=60°,由SSS證明△AC'D≌△CC'D,得出∠AC'D=∠CC'D= ∠AC'C=30°,由∠AC'P=∠ACP=15°,即可得出∠PC'D=15°.
【考點(diǎn)精析】本題主要考查了全等三角形的性質(zhì)和正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )
A. ∠1=∠2 B. ∠BMF=∠DNF
C. ∠AMQ=∠CNP D. ∠1=∠2,∠BMF=∠DNF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△CED均為等邊三角形,且B,C,D三點(diǎn)共線.線段BE,AD相交于點(diǎn)O,AF⊥BE于點(diǎn)F.若OF=1,則AF的長(zhǎng)為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和是兩個(gè)全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動(dòng),運(yùn)動(dòng),且滿足:點(diǎn)E在邊BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),且邊DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于點(diǎn)M .
(1)求證:∠BAE=∠MEC;
(2)當(dāng)E在BC中點(diǎn)時(shí),請(qǐng)求出ME:MF的值;
(3)在的運(yùn)動(dòng)過(guò)程中,能否構(gòu)成等腰三角形?若能,請(qǐng)直接寫出所有符合條件的BE的長(zhǎng);若不能,則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)“中小學(xué)生每天鍛煉1小時(shí)”的號(hào)召,某校開展了形式多樣的“陽(yáng)光體育”活動(dòng),小明對(duì)某班同學(xué)參加鍛煉的情況進(jìn)行了調(diào)查與統(tǒng)計(jì),并繪制了下面的圖1與圖2.根據(jù)你對(duì)圖1與圖2的理解,回答下列問(wèn)題:
(1)小明調(diào)查的這個(gè)班級(jí)有多少名學(xué)生,參加足球鍛煉的學(xué)生人數(shù)所占的百分比是多少?
(2)請(qǐng)你將圖1中“乒乓球”部分補(bǔ)充完整.
(3)求出扇形統(tǒng)計(jì)圖中表示“足球”的扇形的圓心角的度數(shù).
(4)若這個(gè)學(xué)校共有1200名學(xué)生,估計(jì)參加乒乓球活動(dòng)的學(xué)生有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABE=∠ACD=Rt∠,AE=AD,∠ABC=∠ACB.求證:∠BAE=∠CAD.
請(qǐng)補(bǔ)全證明過(guò)程,并在括號(hào)里寫上理由.
證明:在△ABC中,
∵∠ABC=∠ACB
∴AB= ( )
在Rt△ABE和Rt△ACD中,
∵ =AC, =AD
∴Rt△ABE≌Rt△ACD( )
∴∠BAE=∠CAD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PC=4,則PD的長(zhǎng)為( )
A. 2 B. 3 C. 4 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)二樓擺出一臺(tái)游戲裝置如圖所示,小球從最上方入口處投入,每次遇到黑色障礙物,等可能地向左或向右邊落下.
(1)若樂(lè)樂(lè)投入一個(gè)小球,則小球落入B區(qū)域的概率為 .
(2)若樂(lè)樂(lè)先后投兩個(gè)小球,求兩個(gè)小球同時(shí)落在A區(qū)域的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5 cm,且tan∠EFC= ,則矩形ABCD的周長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com