作业宝如圖(1),“作业宝”形是由邊長(zhǎng)為a的大正方形在右下角剪去一個(gè)邊長(zhǎng)為b(b<a)的小正方形得到的,沿虛線將它剪成“Ⅰ”和“Ⅱ”兩部分,并將Ⅱ移到圖(2)的位置構(gòu)成一個(gè)長(zhǎng)方形.
(1)分別寫(xiě)出圖1、圖2中陰影部分的面積.
(2)由結(jié)果你得到什么公式?

解:(1)圖1中陰影部分的面積:a2-b2;
圖2中陰影部分的面積:(a+b)(a-b);
(2)a2-b2=(a+b)(a-b).
分析:(1)利用正方形的面積差求出圖1的面積,圖2的長(zhǎng)為(a+b),寬為(a-b),由長(zhǎng)方形的面積求出答案即可;
(2)兩個(gè)陰影部分面積相等,由(1)中的式子聯(lián)立等式即可.
點(diǎn)評(píng):此題考查利用正方形和長(zhǎng)方形面積計(jì)算方法推導(dǎo)平方差公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、在水平的講臺(tái)上放置圓柱形水杯和長(zhǎng)方體形粉筆盒(如圖),則它的主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

數(shù)形結(jié)合的基本思想,就是在研究問(wèn)題的過(guò)程中,注意把數(shù)和形結(jié)合起來(lái)考察,斟酌問(wèn)題的具體情形,把圖形性質(zhì)的問(wèn)題轉(zhuǎn)化為數(shù)量關(guān)系的問(wèn)題,或者把數(shù)量關(guān)系的問(wèn)題轉(zhuǎn)化為圖形性質(zhì)的問(wèn)題,使復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,化難為易,獲得簡(jiǎn)便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對(duì)于這個(gè)求和問(wèn)題,如果采用純代數(shù)的方法(首尾兩頭加),問(wèn)題雖然可以解決,但在求和過(guò)程中,需對(duì)n的奇偶性進(jìn)行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來(lái)說(shuō)明數(shù)量關(guān)系的事實(shí),那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來(lái)求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個(gè)小圓圈排列組成的.而組成整個(gè)三角形小圓圈的個(gè)數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個(gè)平行四邊形.此時(shí),組成平行四邊形的小圓圈共有n行,每行有(n+1)個(gè)小圓圈,所以組成平行四邊形小圓圈的總個(gè)數(shù)為n(n+1)個(gè),因此,組成一個(gè)三角形小圓圈的個(gè)數(shù)為
n(n+1)
2
,即1+2+3+4+…+n=
n(n+1)
2
精英家教網(wǎng)
(1)仿照上述數(shù)形結(jié)合的思想方法,設(shè)計(jì)相關(guān)圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)
(2)試設(shè)計(jì)另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫(huà)出圖形,并利用圖形做必要的推理說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、用八根木條釘成如圖所示的八邊形木架,要使它不變形,至少要釘上木條的根數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

30、(1)樹(shù)的高度與樹(shù)生長(zhǎng)的年數(shù)有關(guān),測(cè)得某棵樹(shù)的有關(guān)數(shù)據(jù)如下表(樹(shù)苗原高100厘米):
年數(shù)a 高度h(單位:厘米)
1 115
2 130
3 145
 4
(1)填出第4年樹(shù)苗可能達(dá)到的高度;
①請(qǐng)用含a的代數(shù)式表示:a年后樹(shù)的高度h=
100+15a

②根據(jù)這種長(zhǎng)勢(shì),10年后這棵樹(shù)可能達(dá)到的高度是
250
厘米.
(2)觀察如圖的圖形

①第38個(gè)圖形是什么顏色?
黑色

②第19個(gè)圖形是幾邊形?
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,有一個(gè)形如四邊形的點(diǎn)陣,第1層每邊有兩個(gè)點(diǎn),第2層每邊有三個(gè)點(diǎn),第3層每邊有四個(gè)點(diǎn),依此類(lèi)推.
(1)填寫(xiě)下表:
層  數(shù) 1 2 3 4 5 6
各層對(duì)應(yīng)的點(diǎn)數(shù)
4
4
8
8
12
12
16
16
20
20
4n
4n
          
所有層的總點(diǎn)數(shù)
4
4
12
12
24
24
40
40
60
60
2n(n+1)
2n(n+1)
(2)寫(xiě)出第n層對(duì)應(yīng)的點(diǎn)數(shù);
(3)寫(xiě)出n層的四邊形點(diǎn)陣的總點(diǎn)數(shù);
(4)如果某一層共有79個(gè)點(diǎn),你知道它是第幾層嗎?
(5)有沒(méi)有n層的四邊形點(diǎn)陣的總點(diǎn)數(shù)是180?如果有求出n,若沒(méi)有說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案