【題目】如圖,在△ABC中,點O是邊AC上一個動點,過點O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點E、F.

(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

【答案】
(1)

解:∵EF交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,

∴∠OCE=∠BCE,∠OCF=∠DCF,

∵MN∥BC,

∴∠OEC=∠BCE,∠OFC=∠DCF,

∴∠OEC=∠OCE,∠OFC=∠OCF,

∴OE=OC,OF=OC,

∴OE=OF;

∵∠OCE+∠BCE+∠OCF+∠DCF=180°,

∴∠ECF=90°,

在Rt△CEF中,由勾股定理得:EF= =10,

∴OC=OE= EF=5


(2)

解:當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.理由如下:

當O為AC的中點時,AO=CO,

∵EO=FO,

∴四邊形AECF是平行四邊形,

∵∠ECF=90°,

∴平行四邊形AECF是矩形.


【解析】(1)根據(jù)平行線的性質以及角平分線的性質得出∠OEC=∠OCE,∠OFC=∠OCF,證出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)根據(jù)平行四邊形的判定以及矩形的判定得出即可.
【考點精析】本題主要考查了平行線的性質和角平分線的性質定理的相關知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補;定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM、ON上滑動,下列結論:
①若C、O兩點關于AB對稱,則OA=2 ;
②C、O兩點距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點D運動路徑的長為 ;
其中正確的是(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.

(1)直接寫出甲投放的垃圾恰好是A類的概率;

(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家統(tǒng)計局4月15日發(fā)布數(shù)據(jù),初步核算,2015年一季度全國國內生產(chǎn)總值為140667億元,其中數(shù)據(jù)140667用科學記數(shù)法表示為( 。
A.1.40667×105
B.1.40667×106
C.14.0667×104
D.0.140667×106

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1 a a3 a6 a2

2 x 2 x 1 2x x 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a0時,方程ax+b0(其中x是未知數(shù),b是已知數(shù))的解的情況是( )

A. 唯一解B. 無解C. 有無數(shù)多個解D. 無解或有無數(shù)多個解

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二元一次方程x+3y=10的非負整數(shù)解共有( 。⿲Γ

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A=(x﹣3)2 , B=(x+2)(x﹣2)
(1)化簡多項式2A﹣B;
(2)若2A﹣B=2,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC垂足為點D,AD是BC邊上的中線,BE⊥AC,垂足為點E.則以下4個結論:①AB=AC;②∠EBC= ;③AE=CE;④∠EBC= 中正確的有( )

A.①②
B.②③
C.①②③
D.①②③④

查看答案和解析>>

同步練習冊答案