【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB垂足為D,AE平分∠CAB交CD于點(diǎn)F,交BC于點(diǎn)E,EH⊥AB,垂足為H,連接FH.
求證:(1)CF=CE
(2)四邊形CFHE是平行四邊形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)利用垂直的定義結(jié)合角平分線的性質(zhì)以及互余的性質(zhì)得出∠4=∠5,進(jìn)而得出答案;
(2)根據(jù)題意分別得出CF∥EH,CF=EH,進(jìn)而得出答案.
證明 (1)如圖所示:∵∠ACB=90°,CD⊥AB垂足為D,
∴∠1+∠5=90°,∠2+∠3=90°,
又∵∠AE平分∠CAB,
∴∠1=∠2,
∴∠3=∠5,
∵∠3=∠4,
∴∠4=∠5,
∴CF=CE;
(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,
∴CE=EB,
由(1)知,CF=CE,
∴CF=EH,
∵CD⊥AB,EH⊥AB,
∴∠CDB=90°,∠EHB=90°,
∴∠CDB=∠EHB,
∴CD∥EH,
即CF∥EH,
∴四邊形CFHE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準(zhǔn)備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.
(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?
(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過10000元,請(qǐng)你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,將△ABD沿著BD折疊,使點(diǎn)A與點(diǎn)E重合.
(1)如圖,對(duì)角線AC、BD相交于點(diǎn)O,連接OE,則線段OE的長= ;
(2)如圖,過點(diǎn)E作EF∥CD交線段BD于點(diǎn)F,連接AF,求證:四邊形ABEF是菱形;
(3)如圖,在(2)條件下,線段AE、BD相交于M,連接CE,求線段CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AP交x軸于點(diǎn)P(p,0),交y軸于點(diǎn)A(0,a),且a、p滿足.
(1)求直線AP的解析式;
(2)如圖1,點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)為Q,R(0,2),點(diǎn)S在直線AQ上,且SR=SA,求直線RS的解析式和點(diǎn)S的坐標(biāo);
(3)如圖2,點(diǎn)B(﹣2,b)為直線AP上一點(diǎn),以AB為斜邊作等腰直角三角形ABC,點(diǎn)C在第一象限,D為線段OP上一動(dòng)點(diǎn),連接DC,以DC為直角邊,點(diǎn)D為直角頂點(diǎn)作等腰三角形DCE,EF⊥x軸,F為垂足,下列結(jié)論:①2DP+EF的值不變;②的值不變;其中只有一個(gè)結(jié)論正確,請(qǐng)你選擇出正確的結(jié)論,并求出其定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)求m的值;
(3)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(4)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在⊙O上,聯(lián)結(jié)CO并延長交弦AB于點(diǎn)D, ,聯(lián)結(jié)AC、OB,若CD=40,AC=20.
(1)求弦AB的長;
(2)求sin∠ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn),,若點(diǎn)滿足,,那么稱點(diǎn)是點(diǎn),的融合點(diǎn).
例如:,,當(dāng)點(diǎn)滿是,時(shí),則點(diǎn)是點(diǎn),的融合點(diǎn),
(1)已知點(diǎn),,,請(qǐng)說明其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的融合點(diǎn).
(2)如圖,點(diǎn),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是點(diǎn),的融合點(diǎn).
①試確定與的關(guān)系式.
②若直線交軸于點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com