【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-x+4的圖象與x軸和y軸分別相交于A、B兩點(diǎn).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線(xiàn)段AO上以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)O作勻速運(yùn)動(dòng),到達(dá)點(diǎn)O停止運(yùn)動(dòng),點(diǎn)A關(guān)于點(diǎn)P的對(duì)稱(chēng)點(diǎn)為點(diǎn)Q,以線(xiàn)段PQ為邊向上作正方形PQMN.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)正方形PQMN的邊MN經(jīng)過(guò)點(diǎn)B時(shí),t= 秒;
(2)在運(yùn)動(dòng)過(guò)程中,設(shè)正方形PQMN與△AOB重疊部分的面積為S,求S與t的函數(shù)表達(dá)式;
(3)連結(jié)BN,則BN的最小值為 .
【答案】(1);(2)①當(dāng)0<t≤1時(shí),S=t2;②當(dāng)1<t≤時(shí),∴S=﹣t2+18t;③當(dāng)<t≤2時(shí), S=﹣3t2+12;(3).
【解析】
(1) 根據(jù)y=-x+4容易得出A(6,0),B(0,4),所以當(dāng)正方形PQMN的邊MN經(jīng)過(guò)點(diǎn)B時(shí),正方形邊長(zhǎng)為4,則PQ=AP=4,進(jìn)一步求出t=;
(2)分三種情況,①利用正方形的面積減去三角形的面積,②利用矩形的面積減去三角形的面積,③利用梯形的面積,即可得出結(jié)論;
(3)先找出點(diǎn)N的運(yùn)動(dòng)軌跡所在直線(xiàn)的解析式,再用面積求高的方法求出BN的最小值.
解:(1)分別令x=0,y=0,可得 A(6,0),B(0,4),故OB=4.
∴當(dāng)正方形PQMN的邊MN經(jīng)過(guò)點(diǎn)B時(shí),正方形邊長(zhǎng)為4,則PQ=AP=4,
∴t=;
(2)(2)當(dāng)點(diǎn)Q在原點(diǎn)O時(shí),OA=6,
∴AP=OA=3,
∴t=3÷3=1,
①當(dāng)0<t≤1時(shí),如圖1,
令x=0,
∴y=4,
∴B(0,4),
∴OB=4,
∵A(6,0),
∴OA=6,
在Rt△AOB中,tan∠OAB==,
由運(yùn)動(dòng)知,AP=3t,
∴P(6-3t,0),
∴Q(6-6t,0),
∴PQ=AP=3t,
∵四邊形PQMN是正方形,
∴MN∥OA,PN=PQ=3t,
在Rt△APD中,tan∠OAB===,
∴PD=2t,
∴DN=t,
∵MN∥OA
∴∠DCN=∠OAB,
∴tan∠DCN===,
∴CN=t,
∴S=S正方形PQMN-S△CDN=-t×t=t2;
②當(dāng)1<t≤時(shí),如圖2,
同①的方法得,DN=t,CN=t,
∴S=S矩形OENP-S△CDN=3t×(6-3t)-t×t=-t2+18t;
③當(dāng)<t≤2時(shí),如圖3,S=S梯形OBDP=(2t+4)(6-3t)=-3t2+12;
∴①當(dāng)0<t≤1時(shí),S=t2;②當(dāng)1<t≤時(shí),∴S=﹣t2+18t;③當(dāng)<t≤2時(shí), S=﹣3t2+12;
(3)如圖,
設(shè)點(diǎn)N的運(yùn)動(dòng)軌跡所在直線(xiàn)解析式為y=kx+b.由AP=PN=3t,可知當(dāng)t=1時(shí),N(3,3),且直線(xiàn)過(guò)A(6,0),易得解析式為y=-x+6.當(dāng)x=0時(shí),y=6.
直線(xiàn)y=-x+6與y軸交于點(diǎn)C,則C(0,6).可得OC=6,BC=6-4=2.AC=6
∴S△ABC=×6×2=6,
當(dāng)BN⊥AC時(shí),BN最小.
S△ABC=BN×AC,
∴BN==
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線(xiàn)經(jīng)過(guò)原點(diǎn),與軸的另一個(gè)交點(diǎn)為,頂點(diǎn)為.
(1)求這條拋物線(xiàn)表達(dá)式;
(2)將該拋物線(xiàn)向右平移,平移后的新拋物線(xiàn)頂點(diǎn)為,它與軸交點(diǎn)為,聯(lián)結(jié)、,設(shè)點(diǎn)的縱坐標(biāo)為,用含的代數(shù)式表示的正切值;
(3)聯(lián)結(jié),在(2)的條件下,射線(xiàn)平分,求點(diǎn)到直線(xiàn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(為常數(shù)),在自變量的值滿(mǎn)足情況下,與其對(duì)應(yīng)的函數(shù)值的最小值為,則的值為( )
A. 或4B. 或C. 或D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書(shū)畫(huà)作品,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,回答下列問(wèn)題:
(1)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整,并估計(jì)全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹(shù)狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級(jí)的總分學(xué)生進(jìn)行體育中考的模擬測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.
等級(jí) | 得分x(分) | 頻數(shù)(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:
1)本次抽樣調(diào)查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計(jì)圖中,求E等級(jí)對(duì)應(yīng)扇形的圓心角α的度數(shù);
3)我校九年級(jí)共有700名學(xué)生,估計(jì)體育測(cè)試成績(jī)?cè)?/span>A、B兩個(gè)等級(jí)的人數(shù)共有多少人?
4)我校決定從本次抽取的A等級(jí)學(xué)生(記為甲、乙、丙、。┲校S機(jī)選擇2名成為學(xué)校代表參加全市體能競(jìng)賽,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分8分) 青少年沉迷于手機(jī)游戲,嚴(yán)重危害他們的身心健康,此問(wèn)題已引起社會(huì)各界的高度關(guān)注,有關(guān)部門(mén)在全國(guó)范圍內(nèi)對(duì)12﹣35歲的“王者榮耀”玩家進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是_________;
(3)據(jù)報(bào)道,目前我國(guó)12﹣35歲“王者榮耀”玩家的人數(shù)約為2000萬(wàn),請(qǐng)估計(jì)其中12﹣23歲的人數(shù).
(4)根據(jù)對(duì)統(tǒng)計(jì)圖表的分析,請(qǐng)你為沉迷游戲的同學(xué)提一個(gè)合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】廣闊無(wú)垠的太空中有無(wú)數(shù)顆恒星,其中離太陽(yáng)系最近的一顆恒星稱(chēng)為“比鄰星”,它距離太陽(yáng)系約4.2光年.光年是天文學(xué)中一種計(jì)量天體時(shí)空距離的長(zhǎng)度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽(yáng)系約為( )
A. 千米B. 千米C. 千米D. 千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)加工一種商品,每天加工件數(shù)不超過(guò)100件時(shí),每件成本80元,每天加工超過(guò)100件時(shí),每多加工5件,成本下降2元,但每件成本不得低于70元.設(shè)工廠(chǎng)每天加工商品x(件),每件商品成本為y(元),
(1)求出每件成本y(元)與每天加工數(shù)量x(件)之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)若每件商品的利潤(rùn)定為成本的20%,求每天加工多少件商品時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)y=-x+1與拋物線(xiàn)y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(-4,5),并與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=-1,且拋物線(xiàn)與x軸交于另一點(diǎn)B.
(1)求該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)E是直線(xiàn)下方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;
(3)如圖2,若點(diǎn)M是直線(xiàn)x=-1的一點(diǎn),點(diǎn)N在拋物線(xiàn)上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com