【題目】綜合題如圖,D是BC上一點(diǎn),若AB=10,AD=8,AC=17,BD=6,求BC的長(zhǎng).
(1)已知:x= +1,y= ﹣1,求 的值;
(2)如圖,D是BC上一點(diǎn),若AB=10,AD=8,AC=17,BD=6,求BC的長(zhǎng).
【答案】
(1)解:∵x= +1,y= ﹣1,
∴x+y=2 ,x﹣y=2,
∴ = = =
(2)解:解:∵BD2+AD2=62+82=102=AB2,
∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,CD= =15,
∴BC=BD+CD=6+15=21,
答:BC的長(zhǎng)是21.
【解析】①先把原分式的分子、分母分解因式,化簡(jiǎn)為最簡(jiǎn)分式;再化簡(jiǎn)出x+y=2 ,x﹣y=2,的值,代入計(jì)算即可.②根據(jù)勾股定理的逆定理得到△ABD是直角三角形,根據(jù)勾股定理求出CD =15,BC=BD+CD=6+15=21.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)勾股定理的逆定理的理解,了解如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn).是邊上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),沿著折疊該紙片,得點(diǎn)的對(duì)應(yīng)點(diǎn).
(1)如圖①,當(dāng)點(diǎn)在第一象限,且滿足時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)為中點(diǎn)時(shí),求的長(zhǎng);
(3)當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+5的頂點(diǎn)坐標(biāo)為( )
A.(﹣2,﹣1)
B.(2,1)
C.(2,﹣1)
D.(﹣2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1在銳角△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,BE與AD交于點(diǎn)F.
(1)若BF=5,DC=3,求AB的長(zhǎng);
(2)在圖1上過點(diǎn)F作BE的垂線,過點(diǎn)A作AB的垂線,鏈條垂線交于點(diǎn)G,連接BG,得如圖2.
①求證:∠BGF=45°;
②求證:AB=AG+ AF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com