【題目】若x+ =3,求 的值.

【答案】解:∵x+ =3,
∴x2+ +2=9,即x2+ =7.∴
=
=
=
【解析】方法一:將x+ =3兩邊同時平方,求出的值,題中隱含x≠0.因此再將的分子和分母同時除以x2 , 得到,再整體代入計算即可;
方法二:求的倒數(shù),即,再代入值,然后取倒數(shù)即可得出原代數(shù)式的值。
【考點精析】解答此題的關(guān)鍵在于理解倒數(shù)的相關(guān)知識,掌握互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么的倒數(shù)是;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負倒數(shù),以及對代數(shù)式求值的理解,了解求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時求不出其字母的值,需要利用技巧,“整體”代入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=120°,CD平分∠ACB,AE∥DC,交BC的延長線于點E.

求證:△ACE是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【閱讀發(fā)現(xiàn)】如圖①,在△ABC中,∠ACB=45°,AD⊥BC于點D,E為AD上一點,且DE=BD,可知AB=CE.

【類比探究】如圖②,在正方形ABCD中,對角線AC與BD交于點O,E是OC上任意一點,AG⊥BE于點G,交BD于點F.判斷AF與BE的數(shù)量關(guān)系,并加以證明.

【推廣應(yīng)用】在圖②中,若AB=4,BF=,則△AGE的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=2x2向上平移5個單位,所得拋物線的解析式為(
A.y=2x2+5
B.y=2x2﹣5
C.y=2(x+5)2
D.y=2(x﹣5)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD頂點A、B在x軸上,點D在y軸上,函數(shù)y=(x>0)的圖象經(jīng)過點C(2,3),直線AD交雙曲線于點E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點F.

(1)若EB=OD,求點E的坐標(biāo);

(2)若四邊形ABCD為平行四邊形,求過A、D兩點的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備購置甲乙兩種羽毛球拍若干,已知甲種球拍的單價比乙種球拍的單價多40元,且購買4副甲種球拍與購買6副乙種球拍的費用相同.

(1)兩種球拍的單價各是多少元?

(2)若學(xué)校準(zhǔn)備購買100副甲乙兩種羽毛球拍,且購買甲種球拍的費用不少于乙種球拍費用的3倍,問購買多少副甲種球拍總費用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國最新研制的巨型計算機“曙光3000超級服務(wù)器”,它的運算峰值可以達到每秒403200000000次,403200000000用科學(xué)記數(shù)法來表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是等邊三角形.

(1)如圖,點D在AB邊上,點E在AC邊上,BD=CE,BE與CD交于點F. 試判斷BF與CF的數(shù)量關(guān)系,并加以證明;
(2)點D是AB邊上的一個動點,點E是AC邊上的一個動點,且BD=CE,BE與CD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P(-23)所在象限為( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊答案