【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對稱點(diǎn)為D,連接BD,CD,其中CD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖1;
(2)若∠PAB=30°,求∠ACE的度數(shù);
(3)如圖2,若60°<∠PAB<120°,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并證明.

【答案】
(1)解:所作圖形如圖1所示:


(2)解:連接AD,如圖1.

∵點(diǎn)D與點(diǎn)B關(guān)于直線AP對稱,

∴AD=AB,∠DAP=∠BAP=30°,

∵AB=AC,∠BAC=60°,

∴AD=AC,∠DAC=120°,

∴2∠ACE+60°+60°=180°,

∴∠ACE=30°


(3)解:線段AB,CE,ED可以構(gòu)成一個(gè)含有60°角的三角形.

證明:連接AD,EB,如圖2.

∵點(diǎn)D與點(diǎn)B關(guān)于直線AP對稱,

∴AD=AB,DE=BE,

∴∠EDA=∠EBA,

∵AB=AC,AB=AD,

∴AD=AC,

∴∠ADE=∠ACE,

∴∠ABE=∠ACE.

設(shè)AC,BE交于點(diǎn)F,

又∵∠AFB=∠CFE,

∴∠BAC=∠BEC=60°,

∴線段AB,CE,ED可以構(gòu)成一個(gè)含有60°角的三角形.


【解析】(1)根據(jù)題意作出圖形;(2)根據(jù)題意可得∠DAP=∠BAP=30°,然后根據(jù)AB=AC,∠BAC=60°,得出AD=AC,∠DAC=120°,最后根據(jù)三角形的內(nèi)角和公式求解;(3)由線段AB,CE,ED可以構(gòu)成一個(gè)含有60度角的三角形,連接AD,EB,根據(jù)對稱可得∠EDA=∠EBA,然后證得AD=AC,最后即可得出∠BAC=∠BEC=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長線上,且AE=BD,
(1)當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,求證:EC=ED;

(2)當(dāng)點(diǎn)E不是AB的中點(diǎn)時(shí),如圖2,過點(diǎn)E作EF∥BC,求證:△AEF是等邊三角形;

(3)在第(2)小題的條件下,EC與ED還相等嗎,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的橫坐標(biāo)為﹣1,點(diǎn)B在x軸的負(fù)半軸上,AB=AO,∠ABO=30°,直線MN經(jīng)過原點(diǎn)O,點(diǎn)A關(guān)于直線MN的對稱點(diǎn)A1在x軸的正半軸上,點(diǎn)B關(guān)于直線MN的對稱點(diǎn)為B1 , 則∠AOM的度數(shù)為;點(diǎn)B1的縱坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(2m+4,3m+3)在x軸上,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平行四邊形ABCD中,下列結(jié)論不一定正確的是( )

A. AB﹦CD B. 當(dāng)AC⊥BD時(shí),它是菱形

C. AC﹦BD D. 當(dāng)∠ABC﹦90°時(shí),它是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是平行四邊形.直線L經(jīng)過O、C兩點(diǎn).點(diǎn)A的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(11,4),動點(diǎn)P在線段OA上從點(diǎn)O出發(fā)以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿A→B→C的方向向點(diǎn)C運(yùn)動,過點(diǎn)PPM垂直于x軸,與折線OC﹣B相交于點(diǎn)M.當(dāng)Q、M兩點(diǎn)相遇時(shí),P、Q兩點(diǎn)停止運(yùn)動,設(shè)點(diǎn)P、Q運(yùn)動的時(shí)間為t秒(t>0).MPQ的面積為S.

(1)點(diǎn)C的坐標(biāo)為 ,直線L的解析式為

(2)試求點(diǎn)Q與點(diǎn)M相遇前St的函數(shù)關(guān)系式,并寫出相應(yīng)的t的取值范圍.

(3)試求題(2)中當(dāng)t為何值時(shí),S的值最大,并求出S的最大值.

(4)隨著P、Q兩點(diǎn)的運(yùn)動,當(dāng)點(diǎn)M在線段CB上運(yùn)動時(shí),設(shè)PM的延長線與直線L相交于點(diǎn)N.試探究:當(dāng)t為何值時(shí),QMN為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算。
(1)解方程: =1﹣
(2)先化簡,再求值: (9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b滿足(a+2)2+|b﹣3|=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩個(gè)全等的直角三角形拼下列圖形:①平行四邊形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的圖形是_____________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B都在數(shù)軸上,且AB=6
(1)點(diǎn)B表示的數(shù)是
(2)若點(diǎn)B以每秒2個(gè)單位的速度沿?cái)?shù)軸向右運(yùn)動,則2秒后點(diǎn)B表示的數(shù)是;
(3)若點(diǎn)A、B都以每秒2個(gè)單位沿?cái)?shù)軸向右運(yùn)動,而點(diǎn)O不動,t秒后有一個(gè)點(diǎn)是一條線段的中點(diǎn),求t.

查看答案和解析>>

同步練習(xí)冊答案