如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,連接DH交AC于點(diǎn)O.

(1)△ABF≌△CAE;
(2)HD平分∠AHC嗎?為什么?
(1)根據(jù)菱形的性質(zhì)可得AB=BC,再結(jié)合AB=AC可得△ABC為等邊三角形,即可得到∠B=∠CAB=60°,再結(jié)合AE=BF,AB=AC即可證得結(jié)論;(2)平分

試題分析:(1)根據(jù)菱形的性質(zhì)可得AB=BC,再結(jié)合AB=AC可得△ABC為等邊三角形,即可得到∠B=∠CAB=60°,再結(jié)合AE=BF,AB=AC即可證得結(jié)論;
(2)過(guò)點(diǎn)D作DG⊥CH于點(diǎn)G,作DK⊥FA交FA的延長(zhǎng)線于點(diǎn)K,由△ABF≌△CAE.可得∠BAF=∠CAE,即可得到∠CAE+∠CAF=60°,則∠AHC=120°,由∠ADC=60°,可得∠HAD+∠HCD=180°,從而可得∠HCD=∠KAD,即可證得△ADK≌△CDG,再結(jié)合DG⊥CH,DK⊥FA即可得到結(jié)論.
(1)∵ABCD為菱形,
∴AB=BC.
∵AB=AC,
∴△ABC為等邊三角形.
∴∠B=∠CAB=60°.
又∵AE=BF,AB=AC,
∴△ABF≌△CAE;
(2)過(guò)點(diǎn)D作DG⊥CH于點(diǎn)G,作DK⊥FA交FA的延長(zhǎng)線于點(diǎn)K,
∵△ABF≌△CAE.
∴∠BAF=∠CAE,
∵∠BAF+∠CAF=60°,
∴∠CAE+∠CAF=60°,
∴∠AHC=120°,
∵∠ADC=60°,
∴∠HAD+∠HCD=180°,
∵∠HAD+∠KAD=180°,
∴∠HCD=∠KAD,
∵AD=CD,∠DGC=∠AKD=90°,
∴△ADK≌△CDG,
∴DK=DG,
∵DG⊥CH,DK⊥FA,
∴HD平分∠AHC.
點(diǎn)評(píng):此類問(wèn)題知識(shí)點(diǎn)較多,綜合性較強(qiáng),是中考常見題,一般難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在菱形ABCD中,DEAB,垂足為E,DE=8cm,,則菱形ABCD的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn),折疊正方形ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展平后,折痕DE分別交AB,AC于點(diǎn)E,G,連接GF,下列結(jié)論:①AE=AG;②tan∠AGE=2;③;④四邊形ABFG為等腰梯形;⑤BE=2OG,則其中正確的結(jié)論個(gè)數(shù)為(  )。
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明、小亮各有一段長(zhǎng)為40cm的鐵絲,將將鐵絲首尾相連圍成一個(gè)長(zhǎng)方形.
(1)請(qǐng)問(wèn)他倆圍成長(zhǎng)方形一定全等嗎?
(2)如果圍成的長(zhǎng)方形一定全等,則長(zhǎng)方形的長(zhǎng)和寬分別是多少?如果圍成的長(zhǎng)方形不一定全等,請(qǐng)?jiān)偬砑右粋(gè)條件,使得他倆圍成的長(zhǎng)方形全等,并求出長(zhǎng)方形的長(zhǎng)和寬(寫出解題過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知等腰梯形ABCD,AD∥BC,∠D=120°

(1)用直尺和圓規(guī)作出∠BAD的平分線AE,交BC于點(diǎn),(保留作圖痕跡,不要求寫作法);
(2)求證:四邊形AECD是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD中,M、N分別為BC、CD的中點(diǎn),連結(jié)AM、AC交BN與E、F,則EF:FN的值是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知ABCD中,AB=4,BC=6,BC邊上的高AE=2,則DC邊上的高AF的長(zhǎng)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線CD與直線AB相交于點(diǎn)C,
根據(jù)下列語(yǔ)句畫圖(注:可利用三角尺畫圖,但要保持圖形清晰)

(1)過(guò)點(diǎn)PPQAB,交CD于點(diǎn)Q;過(guò)點(diǎn)PPRCD,垂足為R
(2)若∠DCB=120°,則∠QPR是多少度?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=35°,∠B=85°,

(1)求∠DCE的度數(shù);
(2)求∠DCA的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案