(2009•本溪)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.

【答案】分析:(1)利用平移的性質(zhì)畫圖,即對應(yīng)點都移動相同的距離;
(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對應(yīng)點都旋轉(zhuǎn)相同的角度.然后利用弧長公式求點B經(jīng)過(1)、(2)變換的路徑總長.
解答:解:(1)連接AA1,然后從C點作AA1的平行線且A1C1=AC.

同理找到點B.

(2)畫圖正確.

(3);
弧B1B2的長=
點B所走的路徑總長=
點評:本題主要考查了平移變換、旋轉(zhuǎn)變換的相關(guān)知識,做這類題時,理解平移旋轉(zhuǎn)的性質(zhì)是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•本溪)如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,3)三點,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P′,請直接寫出P′點坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練15:坐標與圖形的位置及變換 (解析版) 題型:解答題

(2009•本溪)如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,3)三點,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P′,請直接寫出P′點坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年遼寧省本溪市中考數(shù)學試卷(解析版) 題型:解答題

(2009•本溪)如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,3)三點,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P′,請直接寫出P′點坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練15:坐標與圖形的位置及變換 (解析版) 題型:填空題

(2009•本溪)如圖所示,已知:點A(0,0),B(,0),C(0,1)在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第n個等邊三角形的邊長等于   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前30天沖刺得分專練13:圖形的變換 (解析版) 題型:解答題

(2009•本溪)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2
(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.

查看答案和解析>>

同步練習冊答案