【題目】如圖,AB、AC分別是⊙O的直徑和弦,點D為劣弧AC上一點,弦DE⊥AB分別交⊙O于點D、E,交AB于點H,交AC于點F.P是ED延長線上一點,且PC=PF.
(1)求證:PC是⊙O的切線;
(2)若AD2=DEDF,求證:CF=EF
(3)在(2)的條件下,若OH=1,AH=2,求線段PC的長.
【答案】(1)證明見解析;(2)證明見解析;(3)4.
【解析】
試題解析:(1)連接OC,證明∠OCP=90°即可.
(2)乘積的形式通?梢赞D化為比例的形式,通過證明三角形相似得出.
(3)可以先根據勾股定理求出DH,再通過證明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的長.
試題解析:(1)連接OC.
∵PC=PF,OA=OC,
∴∠PCA=∠PFC,∠OCA=∠OAC,
∵∠PFC=∠AFH,DE⊥AB,
∴∠AHF=90°,
∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,
∴PC是⊙O的切線.
(2)點D在劣弧AC中點位置時,才能使AD2=DEDF,理由如下:
連接AE.
∵點D在劣弧AC中點位置,
∴∠DAF=∠DEA,
∵∠ADE=∠ADE,
∴△DAF∽△DEA,
∴AD:ED=FD:AD,
∴AD2=DEDF.
(3)連接OD交AC于G.
∵OH=1,AH=2,
∴OA=3,即可得OD=3,
∴DH=
∵點D在劣弧AC中點位置,
∴AC⊥DO,
∴∠OGA=∠OHD=90°,
在△OGA和△OHD中,
∴△OGA≌△OHD(AAS),
∴AG=DH,
∴AC=4.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC和△A′B′C′中,有下列條件:①AB=A′B′;②BC=B′C′;③AC=A′C′;④∠A=∠A′;⑤∠B=∠B′;⑥∠C=∠C′,則以下各組條件中不能保證△ABC≌△A′B′C′的一組是( )
A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB=1 cm,BC=3 cm,則點A到點C的距離為( )
A. 4 cm B. 2 cm C. 2 cm或4 cm D. 無法確定
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com