【題目】已知拋物線y=ax2+ c(a≠0).

(1)若拋物線與x軸交于點(diǎn)B(4,0),且過點(diǎn)P(1,–3),求該拋物線的解析式;

(2)a>0,c =0,OA、OB是過拋物線頂點(diǎn)的兩條互相垂直的直線,與拋物線分別交于A、B 兩點(diǎn),求證:直線AB恒經(jīng)過定點(diǎn)(0,);

(3)a>0,c <0,拋物線與x軸交于A,B兩點(diǎn)(AB左邊),頂點(diǎn)為C,點(diǎn)P在拋物線上且位于第四象限.直線PA、PBy軸分別交于M、N兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.

【答案】(1);(2)詳見解析;(3)為定值,=

【解析】

1)把點(diǎn)B(4,0),點(diǎn)P(1,–3)代入y=ax2+ c(a≠0),用待定系數(shù)法求解即可;

(2)如圖作輔助線AE、BF垂直x軸,設(shè)A(m,am2)、B(nan2),由△AOE∽△OBF,可得到,然后表示出直線AB的解析式即可得到結(jié)論;

3)作PQAB于點(diǎn)Q,設(shè)Pm,am2+c)、A–t0)、Bt,0),則at2+c=0, c= at2

PQON,可得ON=amt+at2,OM= amt+at2,然后把ON,OM,OC的值代入整理即可.

(1)把點(diǎn)B(4,0),點(diǎn)P(1–3)代入y=ax2+ c(a≠0),

解之得

,

;

(2)如圖作輔助線AE、BF垂直x軸,設(shè)A(m,am2)、B(nan2),

∵OA⊥OB,

∴∠AOE=∠OBF,

∴△AOE∽△OBF

,,

直線AB過點(diǎn)A(m,am2)、點(diǎn)B(n,an2),

過點(diǎn)(0,);

(3)PQAB于點(diǎn)Q,設(shè)Pm,am2+c)、A(–t,0)、B(t,0),則at2+c=0, c= at2

PQON,

ON=====at(m+t)= amt+at2,

同理:OM= amt+at2,

所以,OM+ON= 2at2=–2c=OC,

所以,=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形,在上取兩點(diǎn)左邊),以為邊作等邊三角形,使頂點(diǎn)上.

(1)PEF的邊長(zhǎng);

(2)PEF的邊在線段上移動(dòng).分別交于點(diǎn)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AC=DC,ACDC,直線MN經(jīng)過點(diǎn)A,作DBMN,垂足為B,連接CB.

(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;

(2)①如圖1,猜想AB,BDBC之間的數(shù)量關(guān)系,并說明理由;

②如圖2,直接寫出AB,BDBC之間的數(shù)量關(guān)系;

(3)MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CDAB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長(zhǎng)線交于點(diǎn)E,且∠E=ACF.

(1)CD=2, AF=3,求⊙O的周長(zhǎng);

(2)求證:直線BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形紙片ABCD中,AB=2,A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cosEFG的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的南偏東60方向,距離燈塔100海里的A處,它計(jì)劃去往位于燈塔P的北偏東45方向上的B.(參考數(shù)據(jù)≈1.414, ≈1.732, ≈2.449

1)問B處距離燈塔P有多遠(yuǎn)?(結(jié)果精確到0.1海里)

2)假設(shè)有一圓形暗礁區(qū)域,它的圓心位于射線PB上,距離燈塔190海里的點(diǎn)O.圓形暗礁區(qū)域的半徑為50海里,進(jìn)入這個(gè)區(qū)域,就有觸礁的危險(xiǎn).請(qǐng)判斷海輪到達(dá)B處是否有觸礁的危險(xiǎn),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB2,AMBN是它的兩條切線,DEOE,交AMD,交BNC.設(shè)ADx,BCy

(1)求證:AMBN

(2)y關(guān)于x的關(guān)系式;

(3)求四邊形ABCD的面積S,并證明:S≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山區(qū)某教學(xué)樓后面緊鄰著一個(gè)土坡,坡面BC平行于地面AD,斜坡AB的坡比為i=1:,且AB=26米,為了防止山體滑坡,保障安全,學(xué)校決定對(duì)該土坡進(jìn)行改造,經(jīng)地質(zhì)人員勘測(cè),當(dāng)坡角不超過53°時(shí),可確保山體不滑坡;

(1)求改造前坡頂與地面的距離BE的長(zhǎng);

(2)為了消除安全隱患,學(xué)校計(jì)劃將斜坡AB改造成AF(如圖所示),那么BF至少是多少米?(結(jié)果精確到1米)

【參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字12、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

同步練習(xí)冊(cè)答案