【題目】如圖,在△ABC中,AD是高,在線段DC上取一點E,使DE=BD,已知AB+BD=DC. 求證:E點在線段AC的垂直平分線上.
【答案】證明:∵AD是高,∴AD⊥BC, 又∵BD=DE,
∴AD所在的直線是線段BE的垂直平分線,
∴AB=AE,
∴AB+BD=AE+DE,
又∵AB+BD=DC,
∴DC=AE+DE,
∴DE+EC=AE+DE
∴EC=AE,
∴點E在線段AC的垂直平分線上
【解析】根據(jù)線段的垂直平分線性質(zhì)求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根據(jù)線段垂直平分線性質(zhì)推出即可.
【考點精析】本題主要考查了線段垂直平分線的性質(zhì)的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是( )
A.﹣m
B.m(n﹣x)
C.m(m﹣x)
D.(m+x)(x﹣n)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2.善于思考的小明進行了以下探索:
設a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=,用含m、n的式子分別表示a、b,得:a=__,b=__;
(2)利用所探索的結論,找一組正整數(shù)a、b、m、n填空:__+__=(___)+__)2;
(3)若a+4=,且a、m、n均為正整數(shù),求a的值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABC沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=4,AD=8,求AE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=2.若點M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( )
A.1個
B.2個
C.3個
D.3個以上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com