(2011•香洲區(qū)一模)如圖(1),拋物線y=x2-2x+k與x軸交于A、B兩點,與y軸交于點C(0,-3).[圖(2)、圖(3)為解答備用圖]

(1)k=______,點A的坐標為______,點B的坐標為______;
(2)設拋物線y=x2-2x+k的頂點為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點D,使四邊形ABDC的面積最大?若存在,請求出點D的坐標;若不存在,請說明理由.
【答案】分析:(1)將C點坐標代入拋物線的解析式中,即可求出k的值;令拋物線的解析式中y=0,即可求出A、B的坐標;
(2)將拋物線的解析式化為頂點式,即可求出M點的坐標;由于四邊形ACMB不規(guī)則,可連接OM,將四邊形ACMB的面積轉化為△ACO、△MOC以及△MOB的面積和;
(3)當D點位于第三象限時四邊形ABCD的最大面積顯然要小于當D位于第四象限時四邊形ABDC的最大面積,因此本題直接考慮點D為與第四象限時的情況即可;設出點D的橫坐標,根據(jù)拋物線的解析式即可得到其縱坐標;可參照(2)題的方法求解,連接OD,分別表示出△ACO、△DOC以及△DOB的面積,它們的面積和即為四邊形ABDC的面積,由此可得到關于四邊形ABDC的面積與D點橫坐標的函數(shù)關系式,根據(jù)函數(shù)的性質(zhì)即可求出四邊形ABDC的最大面積及對應的D點坐標.
解答:解:(1)由于點C在拋物線的圖象上,則有:k=-3;
∴y=x2-2x-3;
令y=0,則x2-2x-3=0,
解得x=-1,x=3,
∴A(-1,0),B(3,0);
故填:k=-3,A(-1,0),B(3,0);

(2)拋物線的頂點為M(1,-4),連接OM;
則△AOC的面積=AO•OC=×1×3=,
△MOC的面積=OC•|xM|=×3×1=,
△MOB的面積=OB•|yM|=×3×4=6;
∴四邊形ABMC的面積=△AOC的面積+△MOC的面積+△MOB的面積=9;

(3)設D(m,m2-2m-3),連接OD;
則0<m<3,m2-2m-3<0;
且△AOC的面積=,△DOC的面積=m,△DOB的面積=-(m2-2m-3);
∴四邊形ABDC的面積=△AOC的面積+△DOC的面積+△DOB的面積
=-m2+m+6=-(m-2+
∴存在點D(,-),使四邊形ABDC的面積最大,且最大值為
點評:此題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象與坐標軸交點坐標的求法、圖形面積的求法、二次函數(shù)的應用等重要知識點,綜合性強,能力要求較高.考查學生數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

同步練習冊答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹