【題目】如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)直接寫出AB與AP所滿足的數(shù)量關系:_____,AB與AP的位置關系:_____;
(2)將△ABC沿直線l向右平移到圖2的位置時,EP交AC于點Q,連接AP,BQ,求證:AP=BQ;
(3)將△ABC沿直線l向右平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ,試探究AP=BQ是否仍成立?并說明理由.
【答案】(1)AB=AP,AB⊥AP;(2)證明見解析;(3)成立,理由見解析.
【解析】試題分析:(1)AB=AP,AB⊥AP,已知AC⊥BC且AC=BC,可得△ABC為等腰直角三角形,所以∠BAC=∠ABC=45°,根據(jù)已知條件易證∠PEF=45°,即可得∠BAP=90°,結論得證;(2)根據(jù)已知條件易證Rt△BCQ≌Rt△ACP,根據(jù)全等三角形的性質(zhì)即可得結論;(3)結論仍成立,類比(2)方法證明即可.
試題解析:
(1)AB=AP;AB⊥AP;
證明:∵AC⊥BC且AC=BC,
∴△ABC為等腰直角三角形,
∴∠BAC=∠ABC=(180°﹣∠ACB)=45°,
易知,△ABC≌△EFP,
同理可證∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
故答案為:AB=AP AB⊥AP
(2)證明:
∵EF=FP,EF⊥FP
∴∠EPF=45°.
∵AC⊥BC,
∴∠CQP=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
(3)AP=BQ成立,理由如下:
∵EF=FP,EF⊥FP,
∴∠EPF=45°.
∵AC⊥BC
∴∠CPQ=∠EPF=45°
∴CQ=CP
在 Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP (SAS).
∴AP=BQ.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關系式;
(4)在(3)的條件下,當點P在邊AB上運動時是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法: ①abc<0;
②2a﹣b=0;
③4a+2b+c<0;
④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1>y2 .
其中說法正確的是( )
A.①②
B.②③
C.①②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知斜坡AB長為80米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.
(1)若修建的斜坡BE的坡角為45°,求平臺DE的長;(結果保留根號)
(2)一座建筑物GH距離A處36米遠(即AG為36米),小明在D處測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高度.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設s= ,當t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從2004年8月1日起,浙江省城鄉(xiāng)居民生活用電執(zhí)行新的電價政策:安裝”一戶一表”的居民
用戶,按用抄見電量(每家用戶電表所表示的用電量)實行階梯式累進加價,其中低于50千瓦時(含50
千瓦時)部分電價不調(diào)整;51—200千瓦時部分每千瓦時電價上調(diào)0.03元;超過200千瓦時部分每千
瓦時電價上調(diào)0.10元.已知調(diào)整前電價統(tǒng)一為每千瓦時0.53元.
(1)若許老師家10月份的用電量為130千瓦時,則10月份許老師家應付電費多少元?
(2)已知許老師家10月份的用電量為千瓦時,請完成下列填空:
①若千瓦時,則10月份許老師家應付電費為 元;
②若50<≤200千瓦時,則10月份許老師家應付電費為 元;
③若>200千瓦時,則10月份許老師家應付電費為 元.
(3)若10月份許老師家應付電費為96.50元,則10月份許老師家的用電量是多少千瓦時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線CD上有一點P.
(1)如果P點在C、D之間運動時,問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關系?請說明理由.
(2)若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關系又是如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點 ,經(jīng)過A、B的直線l以每秒1個單位的速度向下作勻速平移運動,與此同時,點P從點B出發(fā),在直線l上以每秒1個單位的速度沿直線l向右下方向作勻速運動.設它們運動的時間為t秒.
(1)用含t的代數(shù)式表示點P的坐標;
(2)過O作OC⊥AB于C,過C作CD⊥x軸于D,問:t為何值時,以P為圓心、1為半徑的圓與直線OC相切?并說明此時⊙P與直線CD的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com