求拋物線y=-2(x+1)(x-3)的對稱軸和頂點坐標.

解:令y=-2(x+1)(x-3)=0,
解得:x=-1,或x=3,
∴與x軸的交點坐標為:(-1,0)和(3,0)
∴對稱軸為:x==1,
當x=1時,y=-2(1+1)(1-3)=8,
∴頂點坐標為(1,8)
分析:首先求得拋物線與x軸的交點坐標,然后求得其對稱軸和頂點坐標即可.
點評:本題考查了二次函數(shù)的性質,解題時也可化為一般形式然后利用配方法求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,O是坐標原點,直線y=-
3
4
x+9
與x軸,y軸分別交于B,C兩點,拋物線y=-
1
4
x2+bx+c
經過B,C兩點,與x軸的另一個交點為點A,動點P從點A出發(fā)沿AB以每秒3個單位長度的速度向點B運動,運動時間為t(0<t<5)秒.
(1)求拋物線的解析式及點A的坐標;
(2)以OC為直徑的⊙O′與BC交于點M,當t為何值時,PM與⊙O′相切?請說明理由.
(3)在點P從點A出發(fā)的同時,動點Q從點B出發(fā)沿BC以每秒3個單位長度的速度向點C運動,動點N從點C出發(fā)沿CA以每秒
3
10
5
個單位長度的速度向點A運動,運動時間和點P相同.
①記△BPQ的面積為S,當t為何值時,S最大,最大值是多少?
②是否存在△NCQ為直角三角形的情形?若存在,求出相應的t值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線C1與x軸的一個交點為交于(-4,0),對稱軸為x=-1.5,并過點(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關于原點對稱的拋物線C2的解析式,并在C1所在的平面直角坐標系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(點A在點B的左側),
①求出點A和點B的坐標;
②點P在拋物線C1上,且位于點A和點B之間;點Q在拋物線C2上,也位于點A和點B之間、當PQ∥y軸時,求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知拋物線y=x2-2x+6-m與直線y=-2x+6+m,它們的一個交點的縱坐標是4.
(1)求拋物線和直線的解析式;
(2)如圖,直線y=kx(k>0)與(1)中的拋物線交于兩個不同的點A、B,與(1)中的直線交于點P,試證明:
OP
PA
+
OP
OB
=2;
(3)在(2)中能否適當選取k值,使A、B兩點的縱坐標之和等于8?如果能,求出此時的k值;如果不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔東南州)如圖,已知拋物線經過點A(-1,0)、B(3,0)、C(0,3)三點.
(1)求拋物線的解析式.
(2)點M是線段BC上的點(不與B,C重合),過M作MN∥y軸交拋物線于N,若點M的橫坐標為m,請用m的代數(shù)式表示MN的長.
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•荔灣區(qū)一模)拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點.
(1)求出m的值,并選取適當?shù)臄?shù)據(jù)填入下表,在下圖的直角坐標系內描點畫出該拋物線的圖象;
x -1 0 1 2 3
y 0 3 4 3 0
(2)求拋物線與x軸的交點坐標;
(3)直接寫出x取何值時,拋物線位于x軸上方;
(4)直接寫出x取何值時,y的值隨x的增大而增大.

查看答案和解析>>

同步練習冊答案