【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線段BC上時,如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線段BC的延長線上時,如圖2,①中的結(jié)論是否仍然成立,請說明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動。探究:當(dāng)∠ACB多少度時,CE⊥BC?請說明理由.
【答案】(1)①垂直,相等.②都成立,理由見解析;(2)45°,理由見解析
【解析】
試題(1)①根據(jù)∠BAD=∠CAE,BA=CA,AD=AE,運(yùn)用“SAS”證明△ABD≌△ACE,根據(jù)全等三角形性質(zhì)得出對應(yīng)邊相等,對應(yīng)角相等,即可得到線段CE、BD之間的關(guān)系;
②先根據(jù)“SAS”證明△ABD≌△ACE,再根據(jù)全等三角形性質(zhì)得出對應(yīng)邊相等,對應(yīng)角相等,即可得到①中的結(jié)論仍然成立;
(2)先過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,畫出符合要求的圖形,再結(jié)合圖形判定△GAD≌△CAE,得出對應(yīng)角相等,即可得出結(jié)論.
試題解析:
解(1):(1)CE與BD位置關(guān)系是CE⊥BD,數(shù)量關(guān)系是CE=BD.
理由:如圖1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,
∴∠BAD=∠CAE.
又 BA=CA,AD=AE,
∴△ABD≌△ACE (SAS)
∴∠ACE=∠B=45°且 CE=BD.
∵∠ACB=∠B=45°,
∴∠ECB=45°+45°=90°,即 CE⊥BD.
故答案為:垂直,相等;
②都成立,理由如下:
∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠CAE,
在△DAB與△EAC中,
∴△DAB≌△EAC,
∴CE=BD,∠B=∠ACE,
∴∠ACB+∠ACE=90°,即CE⊥BD;
(2)當(dāng)∠ACB=45°時,CE⊥BD(如圖).
理由:過點(diǎn)A作AG⊥AC交CB的延長線于點(diǎn)G,則∠GAC=90°,
∵∠ACB=45°,∠AGC=90°﹣∠ACB,
∴∠AGC=90°﹣45°=45°,
∴∠ACB=∠AGC=45°,
∴AC=AG,
在△GAD與△CAE中,
∴△GAD≌△CAE,
∴∠ACE=∠AGC=45°,
∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣4x﹣m2=0
(1)求證:該方程有兩個不等的實(shí)根;
(2)若該方程的兩個實(shí)數(shù)根x1、x2滿足x1+2x2=9,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,定義直線 與雙曲線 的交點(diǎn) (m、n為正整數(shù))為 “雙曲格點(diǎn)”,雙曲線 在第一象限內(nèi)的部分沿著豎直方向平移或以平行于 軸的直線為對稱軸進(jìn)行翻折之后得到的函數(shù)圖象為其“派生曲線”.
(1)①“雙曲格點(diǎn)” 的坐標(biāo)為;
②若線段 的長為1個單位長度,則n=;
(2)圖中的曲線 是雙曲線 的一條“派生曲線”,且經(jīng)過點(diǎn) ,則 的解析式為 y=;
(3)畫出雙曲線 的“派生曲線”g(g與雙曲線 不重合),使其經(jīng)過“雙曲格點(diǎn)” 、 、 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題:
(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)
(3)[45-(-+)×36]÷5 (4)99×(-36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,數(shù)軸上,O點(diǎn)與C點(diǎn)對應(yīng)的數(shù)分別是0、60(單位:單位長度),將一根質(zhì)地均勻的直尺AB放在數(shù)軸上(A在B的左邊),若將直尺在數(shù)軸上水平移動,當(dāng)A點(diǎn)移動到B點(diǎn)的位置時,B點(diǎn)與C點(diǎn)重合,當(dāng)B點(diǎn)移動到A點(diǎn)的位置時,A點(diǎn)與O點(diǎn)重合.
(1)直尺的長為多少個單位長度(直接寫答案)
(2)如圖2,直尺AB在數(shù)軸上移動,有BC=4OA,求此時A點(diǎn)對應(yīng)的數(shù);
(3)如圖3,以OC為邊搭一個橫截面為長方形的不透明的篷子,將直尺放入篷內(nèi)的數(shù)軸上的某處(看不到直尺的任何部分,A在B的左邊),將直尺AB沿數(shù)軸以5個單位/秒的速度分別向左、向右移動,直到完全看到直尺,所經(jīng)歷的時間為t1、t2, 若t1﹣t2=2(秒),求直尺放入蓬內(nèi),A點(diǎn)對應(yīng)的數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,當(dāng)x>0時,y隨x的增大而增大的是( )
A.y=﹣2x+1
B.y=﹣x2﹣1
C.y=(x+1)2﹣1
D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上的一點(diǎn).過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于F.
(1)求證:EO=FO;(2)若CE=4,CF=3,你還能得到那些結(jié)論?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩點(diǎn)A、B.
(1)畫出符合要求的圖形
①畫線段AB;
②延長線段AB到點(diǎn)C,使BC=AB;
③反向延長線段AB到點(diǎn)D,使DA=2AB;
④分別取BC、AD的中點(diǎn)M、N.
(2)在(1)的基礎(chǔ)上,已知線段AB的長度是4cm,求線段MN的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com