【題目】某校在八年級(jí)開展環(huán)保知識(shí)問卷調(diào)查活動(dòng),問卷一共10道題,八年級(jí)(三)班的問卷得分情況統(tǒng)計(jì)圖如下圖所示:
(1)扇形統(tǒng)計(jì)圖中,a等于多少;
(2)根據(jù)以上統(tǒng)計(jì)圖中的信息,①問卷得分的極差是多少分,②問卷得分的眾數(shù)是多少分,③問卷得分的中位數(shù)是多少分;
(3)請(qǐng)你求出該班同學(xué)的平均分.
【答案】(1)a=14%;(2)①極差是40(分),②眾數(shù)是90分,③中位數(shù)是85(分);(3)該班同學(xué)的平均分為82.6(分).
【解析】
(1)依據(jù)扇形統(tǒng)計(jì)圖中各項(xiàng)目的百分比,即可得到a的值;
(2)依據(jù)極差、眾數(shù)和中位數(shù)的定義進(jìn)行計(jì)算,即可得到答案;
(3)依據(jù)加權(quán)平均數(shù)的算法進(jìn)行計(jì)算,即可得到該班同學(xué)的平均分.
(1)a=1﹣20%﹣30%﹣20%﹣16%=14%;
故答案為:14%;
(2)①問卷得分的極差是100﹣60=40(分),
②90分所占的比例最大,故問卷得分的眾數(shù)是90分,
③問卷得分的中位數(shù)是=85(分);
故答案為:40;90;85;
(3)該班同學(xué)的平均分為:60×14%+70×16%+80×20%+90×30%+100×20%=82.6(分).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)生成)
我們已經(jīng)知道,通過不同的方法表示同一圖形的面積,可以探求相應(yīng)的等式.
2002年8月在北京召開了國(guó)際數(shù)學(xué)大會(huì),大會(huì)會(huì)標(biāo)如圖1所示,它是由四個(gè)形狀大小完全相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形,直角三角形的兩條直角邊長(zhǎng)分別為a、b ( a<b ),斜邊長(zhǎng)為c.
(1)圖中陰影部分的面積用兩種方法可分別表示為 、 ;
(2)你能得出的a,b,c之間的數(shù)量關(guān)系是 (等號(hào)兩邊需化為最簡(jiǎn)形式);
(3)一直角三角形的兩條直角邊長(zhǎng)為6和8,則其斜邊長(zhǎng)為 .
(知識(shí)遷移)
通過不同的方法表示同一幾何體的體積,也可以探求相應(yīng)的等式.如圖2是邊長(zhǎng)為a+b的正方體,被如圖所示的分割線分成8塊.
(4)用不同方法計(jì)算這個(gè)正方體體積,就可以得到一個(gè)等式,這個(gè)等式可以為 .(等號(hào)兩邊需化為最簡(jiǎn)形式)
(5)已知a+b=3,ab=1,利用上面的規(guī)律求a3+b3的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小山崗的斜坡AC的坡角α=45°,在與山腳C距離200米的D處,測(cè)得山頂A的仰角為26.6°,小山崗的高AB約為(結(jié)果取整數(shù),參考數(shù)據(jù):sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)( )
A.164m
B.178m
C.200m
D.1618m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB>∠ABC.
(1)用直尺和圓規(guī)在∠ACB的內(nèi)部作射線CM,使∠ACM=∠ABC(不要求寫作法,保留作圖痕跡);
(2)若(1)中的射線CM交AB于點(diǎn)D,AB=9,AC=6,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=12cm,C為AB延長(zhǎng)線上一點(diǎn),CP與⊙O相切于點(diǎn)P,過點(diǎn)B作弦BD∥CP,連接PD.
(1)求證:點(diǎn)P為 的中點(diǎn);
(2)若∠C=∠D,求四邊形BCPD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知線段AB=12cm,點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若點(diǎn)C恰好是AB的中點(diǎn),則DE= cm;若AC=4cm,則DE= cm;
(2)隨著C點(diǎn)位置的改變,DE的長(zhǎng)是否會(huì)改變?如果改變,請(qǐng)說明原因;如果不變,請(qǐng)求出DE的長(zhǎng);
(3)知識(shí)遷移:如圖②,已知∠AOB=120°,過角的內(nèi)部任意一點(diǎn)C畫射線OC,若OD、OE分別平分∠AOC和∠BOC,試說明∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)2020年9月的日歷如圖1所示,用1×3的長(zhǎng)方形框出3個(gè)數(shù).如果任意圈出一橫行左右相鄰的三個(gè)數(shù),設(shè)最小的數(shù)為x,用含x的式子表示這三個(gè)數(shù)的和為 ;如果任意圈出一豎列上下相鄰的三個(gè)數(shù),設(shè)最小的數(shù)為y,用含y的式子表示這三個(gè)數(shù)的和為
(2)如圖2,用一個(gè)2×2的正方形框出4個(gè)數(shù),是否存在被框住的4個(gè)數(shù)的和為96?如果存在,請(qǐng)求出這四個(gè)數(shù)中的最小的數(shù)字;如果不存在,請(qǐng)說明理由
(3)如圖2,用一個(gè)3×3的正方形框出9個(gè)數(shù),在框出的9個(gè)數(shù)中,記前兩行共6個(gè)數(shù)的和為a1,最后一行3個(gè)數(shù)的和為a2.若|a1﹣a2|=6,請(qǐng)求出正方形框中位于最中心的數(shù)字m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,M是直角邊AC上一點(diǎn),MN⊥AB于點(diǎn)N,AN=3,AM=4,求cosB的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com