【題目】如圖,點(diǎn)E在正方形ABCD的邊CD上運(yùn)動(dòng),ACBE相交于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)E運(yùn)動(dòng)到DC的中點(diǎn)時(shí),求△ABF與四邊形ADEF的面積之比;

2)如圖2,當(dāng)點(diǎn)E運(yùn)動(dòng)到CEED21時(shí),求△ABF與四邊形ADEF的面積之比;

3)當(dāng)點(diǎn)E運(yùn)動(dòng)到CEEDn1時(shí)(n是正整數(shù)),猜想△ABF與四邊形ADEF的面積之比(只寫結(jié)果,不要求寫過程).

【答案】1;(2;(3

【解析】

連接DF,根據(jù)相似的知識(shí)點(diǎn),可知△FEC∽△FBA,則可得出△FEC與△FBA的面積比.

(1)根據(jù)相似的性質(zhì)可得:,再根據(jù)SDEF=SCEFSABF=SADF,則可得到 ABF與四邊形ADEF的面積之比;

2)根據(jù)相似的性質(zhì)可得:,再根據(jù)2SDEF=SCEF,SABF=SADF,則可得到 ABF與四邊形ADEF的面積之比;

3)根據(jù)相似的性質(zhì)可得:,再根據(jù)nSDEF=SCEFSABF=SADF,則可得到 ABF與四邊形ADEF的面積之比;

1)如圖1,連接DF

因?yàn)辄c(diǎn)ECD的中點(diǎn),所以,SDEF=SCEF;

根據(jù)題意可證△FEC∽△FBA,所以=

在正方形ABCD中,AD=AB,∠DAF=BAF=45°,且AF=AF,

所以△DAF△BAF,所以SABF=SADF

因?yàn)?/span>SDEF=SCEF,SABF=SADF, 所以

2)如圖2,連接DF

由(1)可知,,則,且2SDEF=SCEF,SABF=SADF

所以

3)由(1)(2)的規(guī)律可知:

當(dāng)CEEDn1時(shí)(n是正整數(shù)),,則,

nSDEF=SCEF,SABF=SADF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于二次函數(shù)和一次函數(shù),我們把 稱為這兩個(gè)函數(shù)的再生二次函數(shù),其中t是不為零的實(shí)數(shù),其圖象記作拋物線E.現(xiàn)有點(diǎn)A(1,0)和拋物線E上的點(diǎn)B(2,n),請(qǐng)完成下列任務(wù):

(嘗試)

1)當(dāng)t=2時(shí),拋物線的頂點(diǎn)坐標(biāo)為 .

2)判斷點(diǎn)A是否在拋物線E上;

3)求n的值.

(發(fā)現(xiàn))通過(2)和(3)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線E總過定點(diǎn),定點(diǎn)的坐標(biāo) .

(應(yīng)用)二次函數(shù)是二次函數(shù)和一次函數(shù) 的一個(gè)再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m,設(shè)AD的長(zhǎng)為m,DC的長(zhǎng)為m。

1)求之間的函數(shù)關(guān)系式;

2)根據(jù)實(shí)際情況,對(duì)于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請(qǐng)說明理由;

3)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過26m,材料ADDC的長(zhǎng)都是整米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3).

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)若P是第四象限內(nèi)這個(gè)二次函數(shù)的圖象上任意一點(diǎn),PHx軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC.

①求線段PM的最大值;

②當(dāng)PCM是以PM為一腰的等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. △EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

當(dāng)時(shí),當(dāng)時(shí),

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情況給出證明.

3)問題解決

當(dāng)△EDC旋轉(zhuǎn)至A、DE三點(diǎn)共線時(shí),直接寫出線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,BCO的切線,DO上的一點(diǎn),CDCB,延長(zhǎng)CDBA的延長(zhǎng)線于點(diǎn)E

1)求證:CDO的切線;

2)若OFBD于點(diǎn)F,且OF2,BD4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖,,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學(xué)生人數(shù)為   ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=axb的圖象交于C(4,3),E(3,4)兩點(diǎn).且一次函數(shù)圖象交y軸于點(diǎn)A.

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求COE的面積;

(3)點(diǎn)M在x軸上移動(dòng),是否存在點(diǎn)M使OCM為等腰三角形?若存在,請(qǐng)你直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初一(1)班針對(duì)你最喜愛的課外活動(dòng)項(xiàng)目對(duì)全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計(jì)表,繪制成扇形統(tǒng)計(jì)圖.

男、女生所選項(xiàng)目人數(shù)統(tǒng)計(jì)表

項(xiàng)目

男生(人數(shù))

女生(人數(shù))

機(jī)器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根據(jù)以上信息解決下列問題:

1m   ,n   

2)扇形統(tǒng)計(jì)圖中機(jī)器人項(xiàng)目所對(duì)應(yīng)扇形的圓心角度數(shù)為   °;

3)從選航模項(xiàng)目的4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案