【題目】如圖是一個(gè)漢字“互”字,其中,AB∥CD,∠1=∠2,∠MGH=∠MEF.
求證:∠MEF=∠GHN.
證明:∵ AB∥CD(已知)
∴∠1=∠3( )
又∵∠1=∠2(已知)
∴∠2=∠3( )
∴ME∥HN ( )
∴∠MGH=∠ ( )( )
又∵∠MGH=∠MEF (已知)
∴∠MEF=∠GHN( )
【答案】兩直線平行,內(nèi)錯(cuò)角相等; 等量代換; 同位角相等,兩直線平行; GHN; 兩直線平行,內(nèi)錯(cuò)角相等; 等量代換.
【解析】
由AB∥CD.可得∠1=∠3,等量代換易得∠2=∠3,由平行線的判定定理可得ME∥HN,易得∠MGH=∠GHN,等量代換易得結(jié)論.
證明:∵ AB∥CD(已知)
∴∠1=∠3(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠1=∠2(已知)
∴∠2=∠3(等量代換)
∴ME∥HN (同位角相等,兩直線平行)
∴∠MGH=∠(GHN)(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠MGH=∠MEF (已知)
∴∠MEF=∠GHN(等量代換)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,,點(diǎn)為邊的中點(diǎn),點(diǎn)與點(diǎn)關(guān)于對(duì)稱(chēng),連接、、,下列結(jié)論:①;②;③;④,其中正確的是( )
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在四邊形ABCD中,如果對(duì)角線AC和BD相交并且相等,那么我們把這樣的四邊形稱(chēng)為等角線四邊形.
(1)①在“平行四邊形、矩形、菱形”中, 一定是等角線四邊形(填寫(xiě)圖形名稱(chēng));
②若M、N、P、Q分別是等角線四邊形ABCD四邊AB、BC、CD.DA的中點(diǎn),當(dāng)對(duì)角線AC、BD還要滿(mǎn)足 時(shí),四邊形MNPQ是正方形.
(2)如圖2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D為平面內(nèi)一點(diǎn).
①若四邊形ABCD是等角線四邊形,且AD=BD,則四邊形ABCD的面積是 ;
②設(shè)點(diǎn)E是以C為圓心,1為半徑的圓上的動(dòng)點(diǎn),若四邊形ABED是等角線四邊形,寫(xiě)出四邊形ABED面積的最大值,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車(chē)和一輛轎車(chē)分別從甲地開(kāi)往乙地(轎車(chē)的平均速度大于貨車(chē)的平均速度),如圖,線段、折線分別表示兩車(chē)離甲地的距離(單位:千米)與時(shí)間(單位:小時(shí))之間的函數(shù)關(guān)系.
(1)線段與折線中,______(填線段或折線)表示貨車(chē)離甲地的距離與時(shí)間之間的函數(shù)關(guān)系.
(2)求線段的函數(shù)關(guān)系式(標(biāo)出自變量取值范圍);
(3)貨車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長(zhǎng)方形的三個(gè)頂點(diǎn)的坐標(biāo)為,,,且軸,點(diǎn)是長(zhǎng)方形內(nèi)一點(diǎn)(不含邊界).
(1)求,的取值范圍.
(2)若將點(diǎn)向左移動(dòng)8個(gè)單位,再向上移動(dòng)2個(gè)單位到點(diǎn),若點(diǎn)恰好與點(diǎn)關(guān)于軸對(duì)稱(chēng),求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角中,,為的中點(diǎn),將折疊,使點(diǎn)與點(diǎn)重合,為折痕,則的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線與y軸交于點(diǎn)A(0,﹣4),與x軸相交于B(﹣2,0)、C(4,0)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)E在x軸上,∠OEA+∠OAB=∠ACB,求BE的長(zhǎng);
(3)如圖2,將拋物線y=ax2+bx+c向右平移n(n>0)個(gè)單位得到的新拋物線與x軸交于M、N(M在N左側(cè)),P為x軸下方的新拋物線上任意一點(diǎn),連PM、PN,過(guò)P作PQ⊥MN于Q,是否為定值?請(qǐng)說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E在射線BC上,且BE=2CE,連接AE交射線DC于點(diǎn)F,若△ABE沿直線AE翻折,點(diǎn)B落在點(diǎn)B1處.
(1)如圖1,若點(diǎn)E在線段BC上,求CF的長(zhǎng);
(2)求sin∠DAB1的值;
(3)如果題設(shè)中“BE=2CE”改為“=x”,其它條件都不變,試寫(xiě)出△ABE翻折后與正方形ABCD公共部分的面積y與x的關(guān)系式及自變量x的取值范圍(只要寫(xiě)出結(jié)論,不需寫(xiě)出解題過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F分別為菱形ABCD邊AD、CD的中點(diǎn).
(1)求證:BE=BF;
(2)當(dāng)△BEF為等邊三角形時(shí),求證:∠D=2∠A.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com