如圖1,是邊長分別為4和3的兩個等邊三角形紙片ABC和CD′E′疊放在一起.
(1)操作:固定△ABC,將△CD′E′繞點C順時針旋轉得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試說明理由;
(2)操作:固定△ABC,若將△CD′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向以每秒1個單位長的速度平移,平移后的△CDE設為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個三角形是等腰三角形?寫出你的結論并說明理由;
(3)探究:如圖4,在(2)的條件下,將△PQR的頂點P移動至F點,求此時QH的長度.精英家教網(wǎng)精英家教網(wǎng)
分析:(1)求兩條線段之間的關系,可先證明△BCE≌△ACD,進而得出兩條線之間的關系.
(2)等腰三角形的判定問題,可根據(jù)題中角之間的關系進行判斷.
(3)簡單的計算問題,在直角三角形中,利用勾股定理求解即可.
解答:解:(1)BE=AD
證明:由題意可得,BC=AC,CE=CD,
∵∠BCE+∠ACE=60°∠ACE+∠ACD=60°
∴∠BCE=∠ACD,
∴△BCE≌△ACD,
∴BE=AD.

(2)△HQC為等腰三角形
證明:因為∠FCB=30°,
所以∠ACF=30°,
又因為∠RQP=60°,
所以∠QHC=∠HCQ=30°,
所以△HQC為等腰三角形;

(3)由題意得,AF=2,在Rt△AFG中,F(xiàn)G=
3
,所以GR=3-
3
,
在Rt△GRH中,RH=2(3-
3
),
所以HQ=3-2(3-
3
)=2
3
-3
點評:本題考查了等腰三角形的性質及判定定理軸對稱的性質及平移的性質;進行角的等量代換是正確解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,是邊長分別為6和4的兩個等邊三角形紙片ABC和CD1E1疊放在一起.
(1)操作:固定△ABC,將△CD1E1繞點C順時針旋轉得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關系?并請說明理由;
(2)操作:固定△ABC,若將△CD1E1繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向平移,(點F與點P重合即停止平移)平移后的△CDE設為△PQR,如圖3.
探究:在圖3中,除三角形ABC和CDE外,還有哪個三角形是等腰三角形?寫出你的結論(不必說明理由);
(3)探究:如圖3,在(2)的條件下,設CQ=x,用x代數(shù)式表示出GH的長.    

查看答案和解析>>

科目:初中數(shù)學 來源:1+1輕巧奪冠·優(yōu)化訓練(冀教版)七年級數(shù)學(下) 冀教版銀版 題型:044

如圖所示是邊長分別為:2a+b,a+b,a-b的長方體.

(1)求它的體積.

(2)求它的表面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江紹興楊汛橋鎮(zhèn)中學八年級上單元檢測數(shù)學試題(帶解析) 題型:解答題

如圖1,是邊長分別為5和2的兩個等邊三角形紙片ABC和CDˊEˊ疊放在一起.
(1)操作:固定△ABC,將△CDˊEˊ繞點C順時針旋轉得到△CDE,連結AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試說明理由;
(2)操作:固定△ABC,若將△CDˊEˊ繞點C順時針旋轉30°得到△CDE,連結AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向以每秒1個單位長的速度平移,平移后的△CDE設為△PQR,如圖3.探究:在圖3中,除△ABC和△PQR外,還有哪個三角形是等腰三角形?寫出你的結論并說明理由;
(3)探究:如圖3,在(2)的條件下,設△PQR移動的時間為1秒,求△PQR與△AFC重疊部分的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,是邊長分別為4和3的兩個等邊三角形紙片ABC和CD′E′疊放在一起.
(1)操作:固定△ABC,將△CD′E′繞點C順時針旋轉得到△CDE,連接AD、BE,如圖2.探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試說明理由;
(2)操作:固定△ABC,若將△CD′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于點F,在線段CF上沿著CF方向以每秒1個單位長的速度平移,平移后的△CDE設為△PQR,如圖3.探究:在圖3中,除△ABC和△CDE外,還有哪個三角形是等腰三角形?寫出你的結論并說明理由;
(3)探究:如圖4,在(2)的條件下,將△PQR的頂點P移動至F點,求此時QH的長度.

查看答案和解析>>

同步練習冊答案