如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(3)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出OC=OD,結(jié)合題意即可證得結(jié)論;
(2)結(jié)合(1)的結(jié)論可作出判斷;
(3)找到變化中的不變量,然后利用旋轉(zhuǎn)及全等的性質(zhì)即可做出解答.
解答:(1)證明:∵將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,
∴CO=CD,∠OCD=60°,
∴△COD是等邊三角形.

(2)解:當(dāng)α=150°時(shí),△AOD是直角三角形.
理由是:∵將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,
∴△BOC≌△ADC,
∴∠ADC=∠BOC=150°,
又∵△COD是等邊三角形,
∴∠ODC=60°,
∴∠ADO=∠ADC-∠ODC=90°,
∵∠α=150°∠AOB=110°,∠COD=60°,
∴∠AOD=360°-∠α-∠AOB-∠COD=360°-150°-110°-60°=40°,
∴△AOD不是等腰直角三角形,即△AOD是直角三角形.

(3)解:①要使AO=AD,需∠AOD=∠ADO,
∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,
∴190°-α=α-60°,
∴α=125°;
②要使OA=OD,需∠OAD=∠ADO.
∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,
∴α-60°=50°,
∴α=110°;
③要使OD=AD,需∠OAD=∠AOD.
∵∠OAD=360°-110°-60°-α=190°-α,
∠AOD==120°-,
∴190°-α=120°-
解得α=140°.
綜上所述:當(dāng)α的度數(shù)為125°或110°或140°時(shí),△AOD是等腰三角形.
點(diǎn)評(píng):本題以“空間與圖形”中的核心知識(shí)(如等邊三角形的性質(zhì)、全等三角形的性質(zhì)與證明、直角三角形的判定、多邊形內(nèi)角和等)為載體,內(nèi)容由淺入深,層層遞進(jìn).試題中幾何演繹推理的難度適宜,蘊(yùn)含著豐富的思想方法(如運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論、方程思想等),能較好地考查學(xué)生的推理、探究及解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,點(diǎn)D是等邊三角形ABC內(nèi)的一點(diǎn),將△BDC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,試畫(huà)出旋轉(zhuǎn)后的三角形,并指出圖中的全等圖形以及它們的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊和對(duì)應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),BP=5cm,△PAB繞點(diǎn)B旋轉(zhuǎn)后能與△MCB重合,連接PM,則PM=
5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.以O(shè)C為一邊作等邊三角形OCD,連接AC、AD.
(1)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•清流縣質(zhì)檢)星期天,小明在解答下列題目時(shí)卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點(diǎn),OC=1,OA=
3
,OB=
5
.求∠AOC的度數(shù).
小明去請(qǐng)教小穎正在解答下列題目.
題目2:如圖②,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),將△BCO繞C順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說(shuō)明理由;
(2)當(dāng)∠COB=150°時(shí),試判斷△AOD的形狀,并寫(xiě)出OA、OB、OC三者之間的等量關(guān)系式.
小穎說(shuō):“等等,等我做完了,我們一起來(lái)看.”小明看完,小穎做完后高興地說(shuō):“哈哈,太好了,我會(huì)了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來(lái)完成題目1嗎?寫(xiě)出你的解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將線段OC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得到線段CD,連接OD、AD.
(1)求證:AD=BO;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由;
(3)探究:當(dāng)α為多少度時(shí)(直接寫(xiě)出答案),△AOD是等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案