【題目】如圖,點(diǎn)A、B分別表示的數(shù)是6、-12、M、N、P為數(shù)軸上三個(gè)動(dòng)點(diǎn),它們同時(shí)都向右運(yùn)動(dòng)。點(diǎn)M從點(diǎn)A出發(fā),速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)N從點(diǎn)B出發(fā),速度為點(diǎn)M的3倍,點(diǎn)P從原點(diǎn)出發(fā),速度為每秒1個(gè)單位長(zhǎng)度。
(1)當(dāng)運(yùn)動(dòng)3秒時(shí),點(diǎn)M、N、P分別表示的數(shù)是、、;
(2)求運(yùn)動(dòng)多少秒時(shí),點(diǎn)P到點(diǎn)M、N的距離相等?
【答案】
(1)12,6,3
(2)解:由運(yùn)動(dòng)速度的快慢可知分兩種情況:
①P是MN的中點(diǎn),則t﹣(﹣12+6t)=6+2t﹣t,
解得t=1.
②點(diǎn)M、N重合,則﹣12+6t=6+2t,
解得t= .
答:運(yùn)動(dòng)1或 秒后,點(diǎn)P到點(diǎn)M、N的距離相等.
【解析】(1)將t=3代入M、N、P中,可得:
M表示12,N表示6,P表示3,
所以答案是:12、6、3.
【考點(diǎn)精析】本題主要考查了數(shù)軸的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線(xiàn)EF分別交AC,AB邊于E,F(xiàn)點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則△CDM周長(zhǎng)的最小值為( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌手機(jī)的進(jìn)價(jià)為1200元,按原價(jià)的八折出售可獲利14%,則該手機(jī)的原售價(jià)為( )
A.1800元
B.1700元
C.1710元
D.1750元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OF平分∠AOE,OF⊥CD,垂足為O.
(1)若∠AOE=120°,求∠BOD的度數(shù);
(2)寫(xiě)出圖中所有與∠AOD互補(bǔ)的角: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,DE∥AB,DE交BC于E,交AC于F,DE=BC,∠CDE=∠ACB=30°.
(1)若AB=4,求CD的長(zhǎng).
(2)判斷△FCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾何知識(shí)可以解決生活中許多距離最短的問(wèn)題.讓我們從書(shū)本一道習(xí)題入手進(jìn)行知識(shí)探索.
(1)【回憶】
如圖,A、B是河l兩側(cè)的兩個(gè)村莊.現(xiàn)要在河l上修建一個(gè)抽水站C,使它到A、B兩村莊的距離的和最小,請(qǐng)?jiān)趫D中畫(huà)出點(diǎn)C的位置,并說(shuō)明理由.
(2)【探索】
如圖,A、B兩個(gè)村莊在一條筆直的馬路的兩端,村莊 C在馬路外,要在馬路上建一個(gè)垃圾站O,使得AO+BO+CO最小,請(qǐng)?jiān)趫D中畫(huà)出點(diǎn)O的位置,并說(shuō)明理由.
(3)如圖,A、B、C、D四個(gè)村莊,現(xiàn)建一個(gè)垃圾站O,使得AO+BO+CO+DO最小,請(qǐng)?jiān)趫D中畫(huà)出點(diǎn)O的位置,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)如圖1,若CO⊥AB,垂足為O,OE、OF分別平分∠AOC與∠BOC.求∠EOF的度數(shù);
(2)如圖2,若∠AOC=∠BOD=80°,OE、OF分別平分∠AOD與∠BOC.求∠EOF的度數(shù);
(3)若∠AOC=∠BOD=α,將∠BOD繞點(diǎn)O旋轉(zhuǎn),使得射線(xiàn)OC與射線(xiàn)OD的夾角為β,OE、OF分別平分∠AOD與∠BOC.若α+β≤180°,α>β,則∠EOC= . (用含α與β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦節(jié)日期間,某商場(chǎng)為了促銷(xiāo),每件夾克按成本價(jià)提高50%后標(biāo)價(jià),后因季節(jié)關(guān)系按標(biāo)價(jià)的8折出售,每件以168元賣(mài)出,這批夾克每件的成本價(jià)是( )
A.80元
B.84元
C.140元
D.100元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com