計(jì)算
(1)一個(gè)等腰三角形的一邊長(zhǎng)為8cm,周長(zhǎng)為20cm.求:其它兩邊的長(zhǎng).
(2)一個(gè)多邊形的內(nèi)角和為1800°,并且這個(gè)多邊形的各個(gè)內(nèi)角都相等,求:這個(gè)多邊形每一個(gè)內(nèi)角的度數(shù).
分析:(1)已知條件中,本題沒(méi)有明確說(shuō)明已知的邊長(zhǎng)是否是腰長(zhǎng),所以有兩種情況討論,還應(yīng)判定能否組成三角形.
(2)先根據(jù)多邊形的內(nèi)角和公式(n-2)•180°求出多邊形的邊數(shù),然后利用內(nèi)角和除以邊數(shù)即可;
解答:解:(1)①底邊長(zhǎng)為8,則腰長(zhǎng)為:(20-8)÷2=6,所以另兩邊的長(zhǎng)為6cm,6cm,能構(gòu)成三角形;
②腰長(zhǎng)為8,則底邊長(zhǎng)為:20-8×2=4,底邊長(zhǎng)為8cm,另一個(gè)腰長(zhǎng)為4cm,能構(gòu)成三角形.
因此另兩邊長(zhǎng)為8cm、4cm或6cm、6cm.

(2)解:設(shè)多邊形的邊數(shù)為n,
則(n-2)•180°=1800°,
解得n=12,
1800°÷12=150°.
這個(gè)多邊形的每一個(gè)內(nèi)角都等于150°.
點(diǎn)評(píng):本題考查了多邊形的內(nèi)角與外角及等腰三角形的性質(zhì),熟記內(nèi)角和公式求出多邊形的邊數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會(huì)總結(jié),不斷地歸納,思考和運(yùn)用,這樣才能提高我們解決問(wèn)題的能力,下面這個(gè)問(wèn)題大家一定似曾相識(shí):
(1)比較大。
①2+1
 
2
2×1
;  ②3+
1
3
 
2
1
3
③8+8
 
2
8×8

通過(guò)上面三個(gè)計(jì)算,我們可以初步對(duì)任意的非負(fù)實(shí)數(shù)a,b做出猜想a+b
 
2
ab

(2)學(xué)習(xí)了《二次根式》后我們可以對(duì)此猜想進(jìn)行代數(shù)證明,請(qǐng)欣賞:
對(duì)于任意非負(fù)實(shí)數(shù)a,b,∵(
a
-
b
)2≥0
,∴a-2
ab
+b≥0
,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
(3)學(xué)習(xí)《圓》后,我們可以對(duì)這個(gè)結(jié)論進(jìn)行幾何驗(yàn)證:
如圖,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與A、B不重合)過(guò)點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
根據(jù)圖形證明:a+b≥2
ab
,并指出等號(hào)成立時(shí)的條件.
精英家教網(wǎng)
(4)驀然回首,我們發(fā)現(xiàn)在上學(xué)期的《梯形的中位線》一節(jié)遇到的一個(gè)問(wèn)題,此時(shí)運(yùn)用這個(gè)結(jié)論解決是那樣的簡(jiǎn)單:
如圖有一個(gè)等腰梯形工件(厚度不計(jì)),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點(diǎn)為四邊中點(diǎn)),則至少需要包裝帶的長(zhǎng)度為
 
cm.
(注意:包扎時(shí)背面也有帶子,打結(jié)處長(zhǎng)度忽略不計(jì))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會(huì)總結(jié),不斷地歸納,思考和運(yùn)用,這樣才能提高我們解決問(wèn)題的能力,下面這個(gè)問(wèn)題大家一定似曾相識(shí):
(1)比較大。
    ①2+1
2×1
;   ②3+
1
3
2
1
3
;   ③8+8
=
=
2
8×8

(2)通過(guò)上面三個(gè)計(jì)算,我們可以初步對(duì)任意的非負(fù)實(shí)數(shù)a,b做出猜想  a+b
2
ab
;
(3)驀然回首,我們發(fā)現(xiàn)在《梯形的中位線》一節(jié)遇到的一個(gè)問(wèn)題,此時(shí)運(yùn)用這個(gè)結(jié)論巧妙解決;如圖有一個(gè)等腰梯形工件(厚度不計(jì)),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點(diǎn)為四邊中點(diǎn)),則至少需要包裝帶的長(zhǎng)度為
120
2
120
2
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省江陰初級(jí)中學(xué)九年級(jí)5月中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,以O(shè)A1=2為底邊做等腰三角形,使得第三個(gè)頂點(diǎn)C1恰好在直線y=x+2上,并以此向左、右依次類推,作一系列底邊為2,第三個(gè)頂點(diǎn)在直線y=x+2上的等腰三角形.
(1)請(qǐng)你通過(guò)計(jì)算說(shuō)明:底邊為2,頂點(diǎn)在直線y=x+2上且面積為21的等腰三角形位于圖
中什么位置?
(2)求證:y軸右側(cè)的每一個(gè)等腰三角形的面積都等于前后兩個(gè)以腰為一邊的三角形面積之和的一半(如:S右1=,S右2=).
(3)過(guò)D1、A1、C2三點(diǎn)畫(huà)拋物線.問(wèn)在拋物線上是否存在點(diǎn)P,使得△PD1C2的面積是△C1OD1與△C1A1C2面積和的.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省九年級(jí)5月中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,以O(shè)A1=2為底邊做等腰三角形,使得第三個(gè)頂點(diǎn)C1恰好在直線y=x+2上,并以此向左、右依次類推,作一系列底邊為2,第三個(gè)頂點(diǎn)在直線y=x+2上的等腰三角形.

(1)請(qǐng)你通過(guò)計(jì)算說(shuō)明:底邊為2,頂點(diǎn)在直線y=x+2上且面積為21的等腰三角形位于圖

中什么位置?

(2)求證:y軸右側(cè)的每一個(gè)等腰三角形的面積都等于前后兩個(gè)以腰為一邊的三角形面積之和的一半(如:S右1=,S右2=).

(3)過(guò)D1、A1、C2三點(diǎn)畫(huà)拋物線.問(wèn)在拋物線上是否存在點(diǎn)P,使得△PD1C2的面積是△C1OD1與△C1A1C2面積和的.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年江蘇省無(wú)錫市育才中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

在數(shù)學(xué)的學(xué)習(xí)中,我們要學(xué)會(huì)總結(jié),不斷地歸納,思考和運(yùn)用,這樣才能提高我們解決問(wèn)題的能力,下面這個(gè)問(wèn)題大家一定似曾相識(shí):
(1)比較大。
①2+1______;  ②______③8+8______
通過(guò)上面三個(gè)計(jì)算,我們可以初步對(duì)任意的非負(fù)實(shí)數(shù)a,b做出猜想a+b______;
(2)學(xué)習(xí)了《二次根式》后我們可以對(duì)此猜想進(jìn)行代數(shù)證明,請(qǐng)欣賞:
對(duì)于任意非負(fù)實(shí)數(shù)a,b,∵,∴,∴,只有當(dāng)a=b時(shí),等號(hào)成立.
(3)學(xué)習(xí)《圓》后,我們可以對(duì)這個(gè)結(jié)論進(jìn)行幾何驗(yàn)證:
如圖,AB為半圓O的直徑,C為半圓上的任意一點(diǎn),(與A、B不重合)過(guò)點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
根據(jù)圖形證明:,并指出等號(hào)成立時(shí)的條件.

(4)驀然回首,我們發(fā)現(xiàn)在上學(xué)期的《梯形的中位線》一節(jié)遇到的一個(gè)問(wèn)題,此時(shí)運(yùn)用這個(gè)結(jié)論解決是那樣的簡(jiǎn)單:
如圖有一個(gè)等腰梯形工件(厚度不計(jì)),其面積為1800cm2,現(xiàn)在要用細(xì)包裝帶如圖那樣包扎(四點(diǎn)為四邊中點(diǎn)),則至少需要包裝帶的長(zhǎng)度為_(kāi)_____

查看答案和解析>>

同步練習(xí)冊(cè)答案