在正方形ABCD中,O是對(duì)角線AC、BD的交點(diǎn),過O作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的長為( )

A.7
B.5
C.4
D.3
【答案】分析:答題時(shí)首先證明△BEO≌△OFC,故得BE=FC,故知AE=BF,在Rt△BEF中解得EF.
解答:解:根據(jù)題意可知OB=OC,∠OBE=∠OCF,
∵OE⊥OF,
∴∠EOB+∠BOF=90°,
∵∠BOF+∠COF=90°,
∴∠EOB=∠COF,
∴△BEO≌△OFC,
∴BE=CF,
∴Rt△BEF中,
EF=5.
故選B.
點(diǎn)評(píng):解答本題要充分利用正方形的特殊性質(zhì)解決三角形全等等問題,注意在正方形中的特殊三角形的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,在正方形ABCD中,E為AD的中點(diǎn),F(xiàn)為DC上的一點(diǎn),且DF=
14
DC.求證:△BEF是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在正方形ABCD中,點(diǎn)G是BC上任意一點(diǎn),連接AG,過B,D兩點(diǎn)分別作BE⊥AG,DF⊥AG,垂足分別為E,F(xiàn)兩點(diǎn),求證:△ADF≌△BAE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),PE⊥BC,垂足為E,PF⊥CD,垂足為F,求證:EF=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,P是CD上一點(diǎn),且AP=BC+CP,Q為CD中點(diǎn),求證:∠BAP=2∠QAD.

查看答案和解析>>

同步練習(xí)冊(cè)答案