【題目】已知關(guān)于x的方程=1的解為負(fù)數(shù),且關(guān)于x、y的二元一次方程組的解之和為正數(shù),則下列各數(shù)都滿足上述條件a的值的是( 。
A. ,2,5 B. 0,3,5 C. 3,4,5 D. 4,5,6
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為△ABC外一點,DC與AB交于點O,且∠BDC=∠BAC.
(1)求證:∠ABD=∠ACD;
(2)過點A作AM⊥CD于M,求證:BD+DM=CM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某班數(shù)學(xué)興趣小組利用數(shù)學(xué)知識測量建筑物DEFC的高度.他們從點A出發(fā)沿著坡度為i=1:2.4的斜坡AB步行26米到達點B處,此時測得建筑物頂端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD為水平的地面,則此建筑物的高度CD約為( 。┟祝▍⒖紨(shù)據(jù):≈1.7,tan35°≈0.7)
A. 23.1 B. 21.9 C. 27.5 D. 30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直角△ABC 中,AC=BC,∠C=90°,∠CAB=∠ABC=45°,過點 B 作射線BD⊥AB 于 B,點 P 為 BC 邊上任一點,在射線上取一點 Q,使得 PQ=AP.
(1)請依題意補全圖形;
(2)試判斷 AP 和 PQ 的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC和等邊△CDE,A、C、E三點在一條直線上,點M為AD中點,點N為BE中點,求證:△CMN是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰Rt△ABC中,D為斜邊AB的中點,點E在AC上,且∠EDC=72°,點F在AB上,滿足DE=DF,則∠CEF的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊四邊形的紙板剪去△DEC,得到四邊形ABCE,測得∠BAE =∠BCE=90°,BC=CE,AB=DE.
(1)能否在四邊形紙板上只剪一刀,使剪下的三角形與△DEC全等?請說明理由;
(2)求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A、B兩點,則tan∠OAB的值是( )
A. B. C. 1 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com