【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,求EE′的長?并求出∠BE′C的度數(shù)?
【答案】 135°
【解析】
首先根據(jù)旋轉(zhuǎn)的性質(zhì)得出,△EBE′是直角三角形,得到EE′=BE,進(jìn)而得出∠BEE′=∠BE′E=45°,即可得出答案.
解:連接EE′,如圖,
∵△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到△CBE′,
∴BE=BE′=2,AE=CE′=1,∠EBE′=90°,
∴△BEE′為等腰直角三角形,
∴EE′=BE=2,∠BE′E=45°,
在△CEE′中,CE=3,CE′=1,EE′=2,
∵12+(2)2=32,
∴CE′2+EE′2=CE2,
∴△CEE′為直角三角形,
∴∠EE′C=90°,
∴∠BE′C=∠BE′E+∠CE′E=135°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求回答問題:
(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.
填空:線段AD,BE之間的關(guān)系為
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.
(3)解決問題
如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生的大課間活動,準(zhǔn)備購進(jìn)一批跳繩,已知2根短繩和1根長繩共需56元,1根短繩和2根長繩共需82元.
(1)求每根短繩和每根長繩的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種跳繩共50根,并且短繩的數(shù)量不超過長繩數(shù)量的2倍,總費(fèi)用不超過1020元,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副分別含有30°和45°角的兩個(gè)三角板的直角頂點(diǎn)C疊放在一起.
①如圖,CD平分∠ECB,求∠ACB與∠DCE的和.
②如圖,若CD不平分∠ECB,請你直接寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系(不要求說出理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市第四次黨代會上,提出了建設(shè)美麗城市決勝全面小康的奮斗目標(biāo),為策應(yīng)市委號召,學(xué)校決定改造校園內(nèi)的一小廣場,如圖是該廣場的平面示意圖,它是由6個(gè)正方形拼成的長方形,已知中間最小的正方形A的邊長是1米.
若設(shè)圖中最大正方形B的邊長是x米,請用含x的代數(shù)式分別表示出正方形F、E和C的邊長;
觀察圖形的特點(diǎn)可知,長方形相對的兩邊是相等的如圖中的MN和請根據(jù)這個(gè)等量關(guān)系,求出x的值;
現(xiàn)沿著長方形廣場的四條邊鋪設(shè)下水管道,由甲、乙2個(gè)工程隊(duì)單獨(dú)鋪設(shè)分別需要10天、15天完成兩隊(duì)合作施工2天后,因甲隊(duì)另有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,試問還要多少天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點(diǎn)O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小洋八年級下學(xué)期的數(shù)學(xué)成績(單位:分)如下表所示:
測試 類別 | 平時(shí) | 期中 考試 | 期末 考試 | |||
測驗(yàn)1 | 測驗(yàn)2 | 測驗(yàn)3 | 測驗(yàn)4 | |||
成績 | 106 | 102 | 115 | 109 | 112 | 110 |
(1)計(jì)算小洋該學(xué)期的數(shù)學(xué)平時(shí)平均成績;
(2)如果該學(xué)期的總評成績是根據(jù)如圖所示的權(quán)重計(jì)算的,請計(jì)算出小洋該學(xué)期的數(shù)學(xué)總評成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用大小相同的小正方形拼成的圖形,拼第1個(gè)圖需要3個(gè)小正方形,拼第2個(gè)圖需要8個(gè)小正方形,拼第3個(gè)圖需要15個(gè)小正方形,.
根據(jù)拼圖規(guī)律回答:第4個(gè)圖形需要多少個(gè)小正方形;第n個(gè)圖形比第個(gè)圖多需要多少個(gè)小正方形;第n個(gè)圖形共需要多少個(gè)小正方形;
若第n個(gè)圖形比第個(gè)多2019個(gè)小正方形,求n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com