【題目】分解因式:xy2﹣x=

【答案】x(y﹣1)(y+1)
【解析】解:xy2﹣x,
=x(y2﹣1),
=x(y﹣1)(y+1).
故答案為:x(y﹣1)(y+1).
先提取公因式x,再對余下的多項(xiàng)式利用平方差公式繼續(xù)分解.本題考查了用提公因式法和公式法進(jìn)行因式分解,一個多項(xiàng)式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于P(m,n),若點(diǎn)Q的坐標(biāo)為(m,|m-n|),則稱點(diǎn)Q為點(diǎn)P的關(guān)聯(lián)點(diǎn).

(1)請直接寫出點(diǎn)(2,2)的關(guān)聯(lián)點(diǎn);

(2)如果點(diǎn)P在一次函數(shù)y=x-1的圖像上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);

(3)已知點(diǎn)P在一次函數(shù)y=x(x>0)和一次函數(shù)y=x(x>0)所圍成的區(qū)域內(nèi),且點(diǎn)P的“關(guān)聯(lián)點(diǎn)”Q在二次函數(shù)的圖像上,求線段PQ的最大值及此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】皮克定理是用來計算頂點(diǎn)在整點(diǎn)的多邊形面積的公式,公式表達(dá)式為,孔明只記得公式中的S表示多邊形的面積,ab中有一個表示多邊形邊上(含頂點(diǎn))的整點(diǎn)個數(shù),另一個表示多邊形內(nèi)部的整點(diǎn)個數(shù),但不記得究竟是a還是b表示多邊形內(nèi)部的整點(diǎn)個數(shù),請你選擇一些特殊的多邊形(如圖1)進(jìn)行驗(yàn)證,得到公式中表示多邊形內(nèi)部的整點(diǎn)個數(shù)的字母是______,并運(yùn)用這個公式求得圖2中多邊形的面積是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任何實(shí)數(shù)a,可用[a]表示不超過a的最大整數(shù),如[4]=4,[ ]=1,現(xiàn)對72進(jìn)行如下操作:72 [ ]=8 [ ]=2 [ ]=1,這樣對72只需進(jìn)行3次操作即可變?yōu)?,類似地,對81只需進(jìn)行次操作后即可變?yōu)?;(2)只需進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為直線AB上一點(diǎn),COE為直角OF平分AOE

1如圖1,COF=34°,BOE=______;COF=m°BOE=_______,BOECOF的數(shù)量關(guān)系為_____________

2當(dāng)射線OE繞點(diǎn)O逆時針旋轉(zhuǎn)到如圖2的位置時,(1BOECOF的數(shù)量關(guān)系是否還成立?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:x2﹣5x+4;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 過一點(diǎn)有且只有一條直線與已知直線平行

B. 不相交的兩條直線叫做平行線

C. 兩點(diǎn)確定一條直線

D. 兩點(diǎn)間的距離是指連接兩點(diǎn)間的線段

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )
A.3a+2a=5a2
B.a6÷a2=a3
C.(﹣3a32=9a6
D.(a+2)2=a2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|x﹣1|+(y+1)2=0,則x2+y2的值是( )
A.0
B.2
C.﹣2
D.1

查看答案和解析>>

同步練習(xí)冊答案