【題目】1A型鋼板可制成1C型鋼板、3D型鋼板;用1B型鋼板可制成2C型鋼板、1D型鋼板.

1)現(xiàn)需150C型鋼板、180D型鋼板,則怡好用A型、B型鋼板各多少塊?

2)若AB型鋼板共100塊,現(xiàn)需C型鋼板至多150塊,D型鋼板不超過(guò)204塊,共有幾種方案?

3)若需C型鋼板80塊,D型鋼板不多于45塊(A型、B型鋼板都要使用).求AB型鋼板各需多少塊?

【答案】1)用A型鋼板42塊、B型鋼板54塊;(2)共3種方案;(3A型鋼板2塊,B型鋼板39塊.

【解析】

1)根據(jù)題意設(shè)用A型鋼板x塊,用B型鋼板y塊,再利用現(xiàn)需150C型鋼板、180D型鋼板分別得出等式組成方程組進(jìn)而求出即可;

2)設(shè)購(gòu)買A型鋼板m塊,則購(gòu)買B型鋼板(100m)塊,根據(jù)“需C型鋼板至多150塊,D型鋼板不超過(guò)204塊”列出不等式組并解答;

3)設(shè)A型鋼板a塊,B型鋼板b塊,由“需C型鋼板80塊,D型鋼板不多于45塊”列出不等式組,即可求解.

解:(1)設(shè)用A型鋼板x塊,用B型鋼板y塊,

,

解得:

答:用A型鋼板42塊、B型鋼板54塊;

2)設(shè)A型鋼板m塊,B型鋼板(100m)塊,

,

50m52,

∴共3種方案;

3)設(shè)A型鋼板a塊,B型鋼板b塊,

,

b39

a802b0,

b40,

39b40,

b39,a2

A型鋼板2塊,B型鋼板39塊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一塊直角三角板的直角頂點(diǎn)繞著矩形)對(duì)角線交點(diǎn)旋轉(zhuǎn)(如圖①→②→③),、分別為直角三角板的直角邊與矩形的邊、的交點(diǎn).

1)發(fā)現(xiàn):在圖①中,當(dāng)三角板的一直角邊與重合,易證,

證明方法如下:連接,

為矩形

又∵

又∵

在圖③中,當(dāng)三角板的一直角邊與重合,求證:

2)根據(jù)以上學(xué)習(xí)探究:圖②中、、、這四條線段之間的數(shù)量關(guān)系,寫(xiě)出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以O(shè)A為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.

(1)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)全等的△ABC 和△DBE 按圖 1 方式擺放,其中∠ACB=∠DEB90°,∠A=∠D30°,點(diǎn) E 落在 AB 上,DE 所在直線交 AC 所在直線于點(diǎn) F

1)若將圖 1 中的△DBE 繞點(diǎn) B 按順時(shí)針?lè)较蛐D(zhuǎn)角α,且α60°,其它條件不變,如圖 2,請(qǐng)你直接寫(xiě)出線段 AFEF,DE 的數(shù)量關(guān)系;

2)若將圖 1 中的△DBE 繞點(diǎn) B 按順時(shí)針?lè)较蛐D(zhuǎn)角β,且 60°≤β≤180°,其它條件不變.

①如圖 3,(1)中線段 AF,EF,DE 的數(shù)量關(guān)系是否仍然成立,若成立,請(qǐng)證明該結(jié)論;若不成立,請(qǐng)寫(xiě)出新的結(jié)論并證明.

②如圖 4,AB 中點(diǎn)為 MBE 中點(diǎn)為 N,若 BC 2,連接 MN,當(dāng)β 度時(shí),MN 長(zhǎng)度最大,最大值為     (直接寫(xiě)出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).下表是該市居民戶一表生活用水階梯式計(jì)費(fèi)價(jià)格表的部分信息:

自來(lái)水銷售價(jià)格

污水處理價(jià)格

每戶每月用水量

單價(jià):元/

單價(jià):元/

噸及以下

超過(guò) 17 噸但不超過(guò) 30 噸的部分

超過(guò) 30 噸的部分

說(shuō)明:每戶產(chǎn)生的污水量等于該戶自來(lái)水用水量;水費(fèi)=自來(lái)水費(fèi)用+污水處理費(fèi).

1)設(shè)小王家一個(gè)月的用水量為噸,所應(yīng)交的水費(fèi)為元,請(qǐng)寫(xiě)出的函數(shù)關(guān)系式;

2)隨著夏天的到來(lái),用水量將增加.為了節(jié)省開(kāi)支,小王計(jì)劃把7月份的水費(fèi)控制在不超過(guò)家庭月收入的.若小王家的月收入為元,則小王家7月份最多能用多少噸水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,將△APB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一定角度后,可得到△CQB.
(1)求點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1 , 0),B(x2 , 0)(0<x1<x2)兩點(diǎn),與y軸交于點(diǎn)C.
(1)設(shè)AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點(diǎn)D為直線BC下方拋物線上一動(dòng)點(diǎn),當(dāng)△BCD的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)是否存在整數(shù)a,b使得1<x1<2和1<x2<2同時(shí)成立,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案