已知:一元二次方程x2+px+q+1=0的一根為2.
(1)求q關(guān)于p的關(guān)系式;
(2)求證:拋物線y=x2+px+q+1與x軸總有交點(diǎn);
(3)當(dāng)p=-1時(shí),(2)中的拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),A在B的左側(cè),若P點(diǎn)在拋物線上,當(dāng)S△BPC=4時(shí),求P點(diǎn)的坐標(biāo).
分析:(1)將2代替一元二次方程x2+px+q+1=0中的x即可得到pq之間的關(guān)系式;
(2)證明拋物線與x軸總有交點(diǎn)即可證明其根的判別式中大于零即可;
(3)利用p=-1求得拋物線的解析式,利用圍成的三角形的面積求得P點(diǎn)的坐標(biāo)即可.
解答:(1)解:∵方程的根為2,
∴4+2p+q+1=0,
∴q=-2p-5;
(2)證明:△=p
2-4(q+1),
=p
2-4(-2p-5+1),
=p
2+8p+16,
=(p+4)
2,
∵(p+4)
2≥0,
∴△≥0,
∴拋物線y=x
2+px+q+1與x軸總有交點(diǎn);
(3)解:當(dāng)p=-1時(shí),q=-2×(-1)-5=-3,
∴拋物線的解析式為:y=x
2-x-2.
∵B(2,0)C(0,-2),
∴BC=
2,∠OBC=45°.
∵S
△PBC=4.
∴
BC•hBC=4.
∴
hBC=2.
過B點(diǎn)作BD⊥BC交y軸于點(diǎn)D,
∴DO=BO=CO,
∴D點(diǎn)的坐標(biāo)為:(0,2),
∴BD=
2,
過D點(diǎn)作DE∥BC交x軸于點(diǎn)E,
∵∠ODB=∠OBD=45°∠EDB=90°,
∴∠EDO=45°,
∴E(-2,0),
設(shè)直線DE的解析式為y=kx+b(k≠0),
∴
,
∴解得
,
∴直線DE的解析式為y=x+2.
設(shè)直線DE與拋物線的交點(diǎn)P(x,y),
∴
,
∴
,
∴
p1(1-,3-),
p2(1+,3+).
點(diǎn)評(píng):本題考查了函數(shù)綜合知識(shí),函數(shù)綜合題是初中數(shù)學(xué)中覆蓋面最廣、綜合性最強(qiáng)的題型.近幾年的中考?jí)狠S題多以函數(shù)綜合題的形式出現(xiàn).解決函數(shù)綜合題的過程就是轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、方程思想的應(yīng)用過程.