【題目】如圖,在△ABC△DBE中,BC=BE,還需再添加兩個條件才能使△ABC≌△DBE,不能添加的一組條件是( )

A. AB=DB∠ A=∠ D B. DB=AB,AC=DE C. AC=DE∠C=∠E D. ∠ C=∠ E,∠ A=∠ D

【答案】A

【解析】A.已知BC=BE,再加上條件AB=DB,A=D不能證明ABCDBE,故此選項符合題意;

B.已知BC=BE,再加上條件BD=AB,AC=DE可利用SSS證明ABCDBE,故此選項不合題意;

C.已知BC=BE,再加上條件AC=DE,C=E可利用SAS證明ABCDBE,故此選項不合題意;

D.已知BC=BE,再加上條件∠C=E,A=D可利用ASA證明ABCDBE,故此選項不合題意;

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃組織全校1441名師生到相關部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?/span>62兩種型號客車作為交通工具.

下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:

型號

載客量

租金單價

30人/輛

380元/輛

20人/輛

280元/輛

注:載客量指的是每輛客車最多可載該校師生的人數(shù).設學校租用型號客車輛,租車總費用為.

1)求的函數(shù)解析式,請直接寫出的取值范圍;

2)若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最省?最省的總費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料善于思考的小明在解方程組采用了一種“整體代換”的解法,解法如下:

解:將方程②8x+20y+2y=10,變形為 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程組的解為: 請你解決以下問題:

(1)試用小明的“整體代換”的方法解方程組

(2)已知 x、y、z,滿足試求 z 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和DCB中,A=D=90°,AC=BD,AC與BD相交于點O.

(1)求證:ABO≌△DCO;

(2)OBC是何種三角形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關系即可判斷.

中線AD的取值范圍是

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC的邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則y與x函數(shù)關系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BD、CE分別是AC、AB上的中線,BD與CE相交于點O,點M、N分別是OB、OC的中點,連接DE、EM、MN、ND.
(1)求證:四邊形DEMN是平行四邊形;
(2)若四邊形DEMN是菱形,且BC=4cm,AC=6cm,求邊AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,CD⊥AB于D,且AB=8,DB=2.

(1)求證:△ABC∽△ACD;
(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案